
Received: 22 July 2024 Revised: 2 January 2025 Accepted: 5 February 2025

DOI: 10.1111/jace.20470

RESEARCH ARTICLE

Predicting photopolymer resin pyrolysis kinetics in ceramic
vat photopolymerization additive manufacturing

Eoin G. McAleer Joseph Prati JohnM. Matthewson Richard A. Haber
Enver Koray Akdoğan

Department of Materials Science and
Engineering, Rutgers University,
Piscataway, New Jersey, USA

Correspondence
Enver Koray Akdoğan, Department of
Materials Science and Engineering,
Rutgers University, Piscataway, NJ 08854,
USA.
Email: eka@soe.rutgers.edu

Funding information
National Science Foundation,
Grant/Award Number: 1540027

Abstract
The kinetics of polymers pyrolysis, particularly those containing ethoxylated
trimethylolpropane triacrylate ((EtO)3-TMTPA), is of utmost importance in
optimizing the binder removal process that is associated with ceramic vat pho-
topolymerization (CerVPP). Here, we focus on the decomposition kinetics of
a simplified resin, which is a photopolymer system that is formulated from
(EtO)3-TMTPA and a photoinitiator (diphenyl(2,4,6-trimethylbenzoyl) phos-
phine oxide). The thermal behavior of the resin was critically assessed with the
use of thermogravimetric analysis (TGA) under atmospheric pressure in a flow-
ing argon gas atmosphere. The Fraser‒Suzuki function was used to deconvolve
the TGA peaks in conjunction with nonlinear regression that was based on a
finite difference solution of the nonlinear rate equation. From this analysis, per-
tinent kinetic parameters were obtained. The variation of the kinetic parameters
was studied as a function of heating rate. The resultingmodel allowed for the pre-
diction of thermal decomposition behavior of CerVPP resins for a representative,
simulated, yet practical heating rate program. This prediction was compared to
TGA measured resin decomposition using the same heating rate program. The
model’s predictions accurately identified the two primary apparent reaction steps
displayed in the differential TGA data.
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1 INTRODUCTION

Ceramic vat photopolymerization (CerVPP) is a lead-
ing technique for creating intricate ceramic parts.1 While
CerVPPholds advantages over traditional ceramic process-
ing methods, it is a polymer-based method that involves
a lengthy binder removal process, that is, debinding.1 The
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debinding step in ceramic manufacturing is often carried
out based on trial and error. It is a time-consuming and
potentially problematic process2 because the binder, in this
case a photopolymer resin, must be removed from the
CerVPP part slowly enough to prevent specimen failure.1–3
Debinding parts fabricated with CerVPP is particu-

larly challenging compared to other ceramic processing
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methods. The forming process requires the use of a high
volumetric loading of polymer, often exceeding 50% by
volume.3 This means that a large volume of generated
gas must be expelled from the green body during debind-
ing. Methods such as tape casting and ceramic injection
molding face a similar set of problems.4 An additional
challenge with CerVPP debinding is the high thermal sta-
bility of cured photopolymers.5,6 This stability implies a
wider range of polymer degradation and a higher final
debinding temperature. These cured polymers are ther-
mosets and do not redistribute in the body during firing
leading to a nonuniform removal of the binder system.7
In principle, a thorough understanding of the funda-

mental aspects of the thermal decomposition in CerVPP
parts can streamline the debinding process. The study of
resin decomposition is typically accomplished with the
use of thermogravimetric analysis (TGA).3–5 As the resin
undergoes thermal treatment, rapid formation of gaseous
reaction products can occur via thermal decomposition,
leading to defects in the ceramic green bodies.8 Predicting
green body fracture would necessitate an understanding
of the internal pressure development in the green body
during debinding. The removal of resin from the particle
network is often diffusion limited so the system must be
designed accordingly.9 Incorporating the role of pressure
in green body failure modeling has been accomplished by
other authors and would be a logical next step to include
in future studies.10
Thermal debinding can be conducted in a variety of

gas atmospheres depending on the chemistry of both the
resin and the ceramic.11 Oxidizing atmospheres such as
air are often used because air furnaces are cheap, and
both degradation of the resin and removal of carbon are
achieved in a single processing step. Inert gas in the form
of argon or nitrogen is often used to avoid some of the oxi-
dation reactions that can lead to increased gas output.12
Thermal decomposition in inert and non-oxidizing atmo-
spheres is referred to as pyrolysis. Pyrolysis of acrylic resins
has been studied previously and has been found to involve
a combination chain end scission at low temperature and
random chain scission at high temperature.13 Although
incorporating the relevant chemical mechanisms into the
model would strengthen its reliability, this is excluded at
this time to make this model more relevant to a ceramic
engineer that may not fully understand the numerous
chemical interactions during thermal debinding in the,
often proprietary, resins that are used in CerVPP.14
The thermal decomposition of polymers is typically ana-

lyzed through the prism of chemical kinetics, where the
approach is to assess the rates at which chemical reac-
tions occur as a function of temperature and time. In this
study, we endeavor to develop an understanding of the
thermal decomposition kinetics of a simplified CerVPP

resin. Applying kinetic analysis to TGA data, the devel-
oped model will aim to predict the thermal decomposition
of CerVPP resins. Predicting resin decomposition at a vari-
ety of heating rates with only a few experiments can allow
the ceramic engineer to more rapidly develop thermal
debinding protocols for CerVPP parts.
The field of reaction kinetics is vast with many dif-

ferent methodologies being applied successfully.15 Each
approach has its advantages, usually a tradeoff between
ease of use, accuracy, and complexity. Many studies
approximate reactions as containing a single reaction
step,16–20 which greatly simplifies the approach at the
cost of accuracy.21 In many cases, this approximation is
sufficient as there is rate limiting step in many thermal
decomposition reactions.22 On the other hand, the sin-
gle step model may be insufficient when dealing with
large mixtures of components, each with multiple degra-
dation steps, as is often the case in CerVPP. Hence, here,
the focus is on the use of a multistep kinetic model to
describe the thermal decomposition of a CerVPP resin.
The proposed approach combines peak deconvolution and
nonlinear regression with a non-analytical rate equation.
Gaining insight into thermal decomposition of CerVPP
resins can pave the way for more precise and expedited
debinding cycles, leading to defect-free ceramic parts that
can be sintered to high density.

2 KINETICS FORMALISM

To develop the model, we first introduce the relevant
kinetics concepts and parameters of interest for chemical
processes involving a constant heating rate such as ther-
mal decomposition of polymers. The ensuing presentation
applies to a single reaction rate equation only. The rates
of thermal decomposition reactions are parameterized as
a function of temperature (T), degree of conversion (α),
and pressure (P).15 While pressure is a component of the
comprehensive rate equation, it is disregarded in this study
due to the challenges associatedwithmeasuring the partial
pressure of individual reactants.15 The rate equation used
this study has the following mathematical form:

𝑑𝛼

𝑑𝑡
= 𝑘 (𝑇) 𝑓 (𝛼) (1)

Here, the reaction rate constant k(T) has an Arrhenius
type of dependence on temperature given by

𝑘 (𝑇) = 𝐴e
−𝐸a

𝑅𝑇 (2)

where A is the pre-exponential factor or frequency fac-
tor, Ea is the apparent activation energy, R is the ideal gas
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constant, and T is the absolute temperature. The function
f(α) represents the conversion rate of the reaction products
and is modeled according to a chosen reaction model.4,8,10
In this study, we chose a power law reaction model:

𝑓 (𝛼) = (1 − 𝛼)𝑛 (3)

where n is the reaction order. The experiments used in this
study to determine the kinetic parameters were conducted
at a constant heating rate β, which we define as follows:

𝛽 =
𝑑𝑇

𝑑𝑡
(4)

Equations (1)–(4) can be combined to give the rate law
used in this study

𝑑𝛼

𝑑𝑇
= 𝛽𝐴 exp

(
−𝐸a
𝑅𝑇

)
(1 − 𝛼)𝑛 (5)

Equation (5) is a differential equation that cannot be
solved analytically. Therefore, it is necessary to either find
an approximate analytical solution or to solve it using
numerical methods. There are two main approaches to
study the kinetics of decomposition reactions: (1) model-
free methods and (2) model fitting methods.15 These two
categories can also be further subdivided into integral and
differential methods depending on which form of the dif-
ferential equation is used and on the type of data the
computations are being made.
Model-free methods have many different forms and

are extensively used in this field.13,18,19,23–33 Such meth-
ods rely on the isoconversional principle, which states
that the reaction rate at a constant extent of conver-
sion is only a function of temperature.24 These methods
require the use of multiple heating rate experiments
and the determination of the activation energy at mul-
tiple values of conversion.15 The Friedman method is
the widely used method for the differential isoconver-
sional techniques.28 This method does not use approx-
imations. However, the process of transforming TGA
data into differential data by numerical differentiation
will unavoidably introduce noise. In addition, inaccura-
cies will be introduced in the process if data smoothing
is used, which is typical.15 On the other hand, inte-
gral methods in model-free kinetics formalisms may
not require manipulation of TGA data.23 However, they
often require the use of approximations to the integral
form of the differential equations. The common meth-
ods in this category are the Flynn‒Wall‒Ozawa (FWO)
method, Kissinger‒Akahira‒Sunose (KAS) method, and
the method developed by Vyazovkin.18,19,23,33 Both FWO
andKSAuse approximations in the general form ln(

𝛽𝑖

𝑇𝐵
𝛼,𝑖

) =

𝐶0 − 𝐶1(
𝐸𝛼

𝑅𝑇𝛼
).15 Vyazovkin was able to use numerical inte-

gration to further improve on the integral methods.15,33
Model-free methods are valuable for their ease of appli-
cation but are known to be valid over small ranges of
conversion.15
Model fitting methods take a different approach to solv-

ing for the kinetic parameters by defining a function 𝑓(𝛼)
to describe a given decomposition reaction. Such methods
either use linear or nonlinear regression to determine the
kinetic parameters.5–7 The most popular linear model fit-
tingmethods for thermal decomposition are those of Coats
and Redfern16 and Lee and Beck.17 Both methods rely on
simplifying the integral form of the differential equation
by approximations. While Coats and Redfern approximate
an asymptotic series, Lee and Beck carries out integra-
tion by parts assuming some terms are negligible.5,6 Both
methods then assume akineticmodel to determine the cor-
responding kinetic parameters. However, such methods
require a choice of reaction order that is arbitrary or needs
repeated fits to the data to determine the optimal reaction
order.5,6 While the linear methods have proven useful in
specific scenarios, the complexity and diversity of many
reactions necessitate more adaptable and comprehensive
techniques.
In this study, we utilized nonlinear model fitting meth-

ods which, in contrast to isoconversional and linear model
fitting methods, can handle multistep reactions and intri-
cate kinetics. Our approach adopts an nth order reaction
model to articulate the rate dependence on conversion,34
building on the work of Prati et al.35 The technique
employed here is based on nonlinear regression using a
finite differencemethod to the associated differential equa-
tion. Notably, our method employs a trust region reflective
algorithm (TRRA) for the optimization of least squares in
lieu of the standard Levenberg‒Marquardt algorithm used
by conventional methods.36,37
Accordingly, we solved Equation (5) using TRRA.

Because the TGA measures the mass remaining (m) and
not the degree of conversion (α), where m = (1 ‒ α), the
finite difference approach was used to solve the equation
as per:

𝑚𝑖 = 𝑚𝑖−1 +

(
𝑑𝑚

𝑑𝑇

)
𝑖−1

(𝑇𝑖 − 𝑇𝑖−1) (6)

By substituting Equation (5) into Equation (6), one
obtains

𝑚𝑖 = 𝑚𝑖−1 −

(
𝐴𝑚𝑛

𝑖−1

𝛽

)
exp

[
−𝐸a

𝑅𝑇(𝑖−1)

]
(𝑇𝑖 − 𝑇𝑖−1) (7)

Equation (7) enables computation of the estimatedmass,
mi, for every temperature Ti by utilizing the preceding
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estimated mass, mi‒1, the kinetic parameters of each reac-
tion, A, Ea, n, and the heating profile {Ti}. The formula
is then aligned with the observed masses, {Mi}, using
a nonlinear least-squares regression technique (TRAA)
that is executed in MATLAB via the lsqcurvefit function.
This approach determines the kinetic parameters of the
reaction A, Ea, and n.
Moreover, to tackle more complex reaction kinetics, we

incorporated peak deconvolution of the differential ther-
mogravimetric (DTG) data into our methodology. When
utilized for a single reaction system, our technique offers
a representation of the ongoing chemical reactions. How-
ever, one must acknowledge that chemical processes,
especially thermal decomposition reactions, are seldom
restricted to a single reactive step.38 Ideally, every step in a
reaction is distinctly identifiable in experimental data. On
the other hand, singling out each reaction often proves to
be a challenge in practice if not impossible. Even within
DTG data, where reactions manifest themselves as distinct
steps, it is common to find multiple reactions contribut-
ing to a singular apparent peak on a DTG plot. As such,
it becomes imperative to dissect the overall reaction data
into clusters that represent singular reactions. For the
purposes of this study, we consider datamanifesting as sin-
gular degradation peaks in the DTG signal to be individual
reactions. While this might seem to be an oversimplifica-
tion, such an approach enables the description of a vast
spectrum of decomposition reactions without delving into
the intricacies of each underlying reaction. This approach
holds value for practitioners aiming to streamline the ther-
mal decomposition process across various binder systems
in CerVPP.
Deconvolution is used to address apparent reaction step

overlap in the DTG data. The existing kinetics literature
points to two prominent forms of kinetic deconvolution:
(1) mathematical deconvolution analysis (MDA) and (2)
kinetic deconvolution analysis (KDA).21 TheMDAmethod
was used in this study to deconvolve reaction peaks where
the underlying assumption is that each apparent reaction
step is independent from each other. While there might be
exceptions to this assumption in each ensemble of ther-
mal decomposition reactions, our choice of deconvolution
of DTG peaks aligns with our aim of crafting a gener-
alized methodology to streamline analyses for CerVPP
systems.
To apply MDA to DTG data a peak shape function

(PSF) must be chosen to accomplish the deconvolution of
reaction peaks. The choice of PSF is of paramount impor-
tance for obtaining accurate fits to the kinetic data. We
implemented the Fraser‒Suzuki function in our analyses
because it has been proven to be very successful in fitting
various reaction kinetics data.26,39–41 The Frazer‒Suzuki

function is given by

𝐹 (𝑡) = 𝑎0 exp

⎡⎢⎢⎢⎣− ln 2
⎧⎪⎨⎪⎩
ln

(
1 + 2𝑎3

(
𝑡−𝑎1

𝑎2

))
𝑎3

⎫⎪⎬⎪⎭
⎤⎥⎥⎥⎦ (8)

a0, a1, a2, and a3 are the parameters corresponding to
the amplitude, position, half-width, and asymmetry of
the peak, respectively.42,43 The Frazer‒Suzuki function
was used within MATLAB to deconvolve the DTG data.
This deconvolution follows the steps first reported by
O’Haver.44
Deconvolution requires the estimation of parameters

describing the PSF. The initial values for the parameters of
each apparent reaction step were determined using mouse
inputs on a graph of the DTG data. Approximate locations
of the DTG peak maximum and the two values at the half
maximum of each curve were chosen. The approximate
DTG peak maximum was used as a guess for a1, the dif-
ference in the approximate half maximum values was used
as a guess for a2, and a value of zero is used as a guess for
a3. The a0 parameter is not needed as an input parameter
because the function implemented in MATLAB will solve
for the amplitude of each peak. Once these initial guesses
were determined, the “fminsearch” function in MATLAB
was used to find the parameters that minimize the error
between the DTG data and the description of the DTG
peak using the Fraser‒Suzuki function. The “fminsearch”
function utilizes the simplex searchmethod established by
Lagarias using the Nelder‒Mean algorithm.45
Once the Fraser‒Suzuki function describing each peak

in the DTG data is established, the function describing
each DTG peak is evaluated at each point of the tempera-
ture data vector from the TGA experiment. The nonlinear
curve fitting, described above, is then performed on the
data for each apparent reaction step to provide values for
A, Ea, and n. These kinetic parameter values can then
be used to give an overall description of the reaction rate
by substituting them into the finite difference description
of the reaction rate. Again, assuming that the reactions
are independent, the descriptions of the reaction rate for
each independent apparent reaction can be summed in the
following way form reactions:

𝑑𝛼

𝑑𝑡
=

𝑚∑
𝑖

𝑘𝑖(𝑇)𝑓𝑖(𝛼) (9)

It will be shown that the nonlinear model fitting can be
used to comprehensively analyze multistep reactions. This
study distinguishes itself by employing a combination of
the Fraser‒Suzuki function and non-linear model fitting
to analyze thermal decomposition phenomena in CerVPP
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systems via TGA, offering an alternative to conventional
isoconversional methods.

3 EXPERIMENTALMETHODS

3.1 Sample preparation and curing

A photopolymer resin was prepared for this study, which
will be referred to as M100. This resin consists of a combi-
nation of a photoreactive monomer (ethoxylated trimethy-
lolpropane triacrylate [(EtO)3-TMTPA]) and a photoini-
tiator (diphenyl(2,4,6-trimethylbenzoyl) phosphine oxide
[TPO]). The mixture consists of 97% by weight of (EtO)3-
TMTPA and 3% by weight of TPO. To mix the resin, the
constituents were added to a 250 mL container and mixed
in a dual asymmetric centrifugal mixer (Flacktek Inc.).
Three aluminum oxide grinding media were added to aid
the mixing process. The mixing cycle was conducted in
four stages which were all conducted under 2 kPa of pres-
sure. The four stages had the following mixing rates 17.5,
20.8, 32.5, and 20 Hz and were for 2, 2, 1, and 1 min,
respectively. Mixing was repeated until TPO was fully
incorporated, and resin was no longer cloudy. This resin
contains elements common to resins used in the additive
manufacturing of aluminum oxide. No ceramic powder
was included in the resin to eliminate effects from solid
loading or surface interactions between the ceramic and
polymer.
The resins underwent a curing process, which was

accomplished using the DLP light engine (3DLP9000 light
engine; Digital Light Innovations) contained within the
Admaflex 130 (Admatec Inc.) 3D printer. A sheet of biaxi-
ally oriented polyethylene terephthalate was placed on top
of the glass that resided above the projector. A vat was
placed above the polymer film, and a thick layer of resin
was poured into the vat. A 405 nm light was projected onto
the resin with an energy dose of 150 J/m2. A mask consist-
ing of a 4 × 8 array of 4.5 mm circles was used to obtain
cured resin samples that fit easily into the pans used for
thermal analysis.

3.2 Thermogravimetric analysis and
differential scanning calorimetry

TGA was conducted using a TA Instruments SDT 650 fol-
lowing the guidelines provided by the ICTAC Kinetics
Committee.46 The range for TGA analysis was between 295
and 1073 K. A range of heating rates were used, that is, 0.5,
1, 10, and 50 K/min. The atmosphere control was accom-
plished with argon gas (Airgas Ultra High Purity Grade)
at 100 mL/min flow rate. Argon is used to prevent sig-

nificant oxidation during debinding.13 The TGA chamber
was left at room temperature under flowing gas for 30 min
before the experimentwas started. Alumina crucibles were
used in the TGA analyses of resin samples. Sample mass
remained around 40 mg.
The derivative of the data was computed numerically

using the gradient function in MATLAB. The spacing of
the points to which the gradient operation was applied was
varied depending on heating rate. Such an approach was
needed to correct for the fact that the sampling rate at each
heating rate was left constant. The spacing in points for
heating rates of 0.5, 1, 10, and 50 K/min were 466, 233, 23,
and 4, respectively.

4 RESULTS AND DISCUSSION

The analysis reported below utilized data collected via
TGA under flowing argon at heating rates of 0.5, 1, 10,
and 50 K/min. Figure 1 shows the TGA experiments and
the derived DTG data. Upon inspecting the data, several
observations stand out:

1. As the heating rate rises, the degradation onset shifts
to a higher temperature as commonly observed in TGA
analysis.37

2. The maximum mass loss rate per unit temperature (K)
remains relatively constant.

3. The number of noticeable DTG peaks differs depend-
ing on the heating rate. At a 0.5 K/min heating rate,
three distinct apparent reaction steps are visible, reach-
ing maximum rates at around 633, 669, and 803 K. At
a 50 K/min heating rate, the first two peaks in the
DTG signal merge into a single apparent reaction step.
This apparent reaction step reaches a maximum rate of
mass loss at approximately 743 K. The DTG signal at
high temperatures also shows a notable reduction in its
maximum degradation rate at this heating rate.

As elaborated in Section 2, the multistep kinetic analy-
sis requires peak deconvolution using the Fraser‒Suzuki
function to characterize each local DTG signal peak. Since
the 0.5 K/min heating rate offered the most discernible
apparent reaction steps in its degradation behavior, these
data served as a visual indicator for determining the reac-
tion steps required formodeling.Given the three localDTG
signal maxima at the 0.5 K/min rate, three apparent reac-
tion stepswere used as the basis of the degradation kinetics
model.
Beginning with the slowest heating rate of 0.5 K/min,

the data are first deconvolved into three functions, each
representing one apparent reaction step. The subsequent
three heating rate experiments are analyzed, using the
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6 of 11 MCALEER et al.

F IGURE 1 Thermogravimetric analysis (TGA) and differential thermogravimetric (DTG) data as a function of heating rates for M100
ceramic vat photopolymerization (CerVPP) 3D printing resin.

parameters derived from the initial rate experiment as
starting estimates for characterizing the three apparent
reaction steps. The objective was to maintain the relative
positioning of the apparent reaction steps consistent across
different heating rates. It is worth noting that the two
fastest heating rate experiments result in the merging of
the two previously distinct peaks in the DTG data observed
at slower rates. The resulting deconvolved peaks and the
raw DTG data are shown in Figure 2.
After describing the deconvolved peaks in the DTG data

using the Fraser‒Suzuki function, the next step was to
fit the empirical Fraser‒Suzuki curves with the kinetic
description of each apparent reaction. This is achieved by
using nonlinear regression to a finite difference solution
of the kinetic differential equations to obtain the kinetic
parameters that fit the Fraser‒Suzuki description of each
apparent reaction step. Data generated for fitting purposes
are created by solving the Fraser‒Suzuki representation of
each apparent reaction step with the experimental data’s
temperature dependence. The reaction order was confined
to the 0‒2 interval.
In Figure 3, each peak is depicted by its Fraser‒Suzuki

function representation (solid line) and its corresponding
kinetic description (dotted line), with the apparent reac-
tion steps grouped by their respective heating rates. One
immediately notices that the established kinetic parame-
ters describe the Fraser‒Suzuki function representations
of the apparent reaction steps well, although there is
some discrepancy at the second peak for slower heat-
ing rates of 0.5 and 1 K/min. This discrepancy could be

TABLE 1 Kinetic parameters as a function of heating rate for
M100 resin.

Peak weight ln(A) E/R n
0.5◦C/min heating rate
Peak 1 0.59 14.02 14 123.5 0.898
Peak 2 0.31 80.23 58 984.46 1.99
Peak 3 0.1 26.29 27 718.66 1.4

1◦C/min heating rate
Peak 1 0.6 18.18 16 634.41 0.89
Peak 2 0.32 90.26 66 345.01 1.99
Peak 3 0.08 23.13 25 665.86 1.4

10◦C/min heating rate
Peak 1 0.67 28.62 23 480.28 0.898
Peak 2 0.3 96.26 73 226.43 1.99
Peak 3 0.03 12.6 17 399.57 1.4

50◦C/min heating rate
Peak 1 0.65 32.18 25 908.73 0.898
Peak 2 0.31 98.07 76 236.38 1.99
Peak 3 0.04 10.23 13 052.53 1.4

attributed to the fact that descriptionswith a reaction order
below 2 have difficulties in accurately capturing the sharp
degradation rate observed in peak 2.
Table 1 contains the kinetic parameters characterizing

each apparent reaction step. When substituted into the
finite difference description from Equation (7), it enables
the calculation of the predicted conversion as a function
of temperature. This prediction is set against the raw TGA
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MCALEER et al. 7 of 11

F IGURE 2 Deconvolution of differential thermogravimetric (DTG) profiles as a function of hearing rate for M100 ceramic vat
photopolymerization (CerVPP) 3D printing resin.

F IGURE 3 Fraser‒Suzuki representation (solid lines) and kinetic modeling (dotted lines) of apparent thermal decomposition reactions
as a function of heating rate for M100 ceramic vat photopolymerization (CerVPP) 3D printing resin.
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F IGURE 4 Predicted conversion factors as computed using Equation (7) in conjunction with the data in Table 1 and its comparison with
the raw thermogravimetric analysis (TGA) data for M100 ceramic vat photopolymerization (CerVPP) resin.

F IGURE 5 Thermogravimetric analysis (TGA) data with (a) polynomial fit and (b) power law fit M100 ceramic vat photopolymerization
(CerVPP) 3D printing resin.

data and depicted in Figure 4. The match between the raw
data and the prediction of the model is satisfactory.
With kinetic parameters established across measured

heating rates, there is a need to predict behaviors at inter-
mediate heating rates. Two approaches were explored to
describe the kinetic parameters as a function of heat-
ing rate: (1) a second order polynomial fit, and (2) a
power law fit. These fits were aimed at finding the rel-
ative peak weight, pre-exponential factor, and activation
energy as a function of heating rate. Comparisons against
raw TGA data are displayed in Figure 5a for the polyno-

mial and Figure 5b for the power law fits, respectively.
Notably, while the polynomial fit exhibits a smaller root
mean square error, it describes the frequency factor and
activation energy reaching a maximum before the fastest
heating rate, justifying a preference for the power law fit
in assessing kinetics across varied heating programs.
The overarching goal of this analysis is the search for a

model that captures the behaviors of CerVPP resins under
diverse heating rates to optimize debinding behavior. As
a first effort, this study seeks to produce TGA data for a
dynamic heating program—one that encompasses a wide
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TABLE 2 Thermal treatment cycles used for modeling of
thermal decomposition.

Heating
step

Heating rate
(K/min)

Final
temperature (K)

1 5 473
2 0.5 573
3 1 573
4 2 773
5 10 1073

F IGURE 6 Comparison of the thermal decomposition kinetics
model for thermogravimetric analysis (TGA) and differential
thermogravimetry (DTG) and the experimental data for M100
ceramic vat photopolymerization (CerVPP) 3D printing resin.

range of heating rates of practical interest. This program,
as illustrated in Table 2, was created to mimic a typi-
cal debinding protocols, starting with rapid heating that
decelerates around the peak degradation rate and then
accelerates near the completion of degradation.
A MATLAB program was employed to evaluate the

concentration (α) as a function of temperature for the
designed heating schedule. This program first determines
the kinetic parameters at each heating rate step with the
power law fit to the kinetic parameters discussed previ-
ously. To prevent large discontinuities between heating
rate steps, an interpolation procedure was applied at the
beginning of each step. This involves linearly interpolating
the kinetic parameters and peak weights over the initial
33% of the temperature range of the current ramp, creat-
ing a smooth transition between the old and new heating
rates and parameters. The program then determines the
concentration change at each heating rate step using the
finite difference solution.
As illustrated in Figure 6, the model captures the exper-

imental sample’s behavior, highlighting two prominent
reaction rate peaks. However, there are some notable

discrepancies: an extended elevated rate for the first
degradation step. The temperatures at which the peak
degradation rates occur do not precisely match, and a zero
mass is reached at the final temperature. These discrepan-
cies could be attributed to several factors. First, theremight
be errors in the individual heating rate models fitted to the
experimental data. This could be due to a limitation of the
chosen reactionmodel, the existencemore than threemain
reactions, or reactions that are not independent. Second,
the power law description of the dependence of the kinetic
parameters might not be adequate. Third, the use of linear
interpolation between heating rates could introduce some
inaccuracies as it may not capture how the temperature
controller transitions between heating rates. Last, there
may be residual carbon left in the sample at the conclusion
of heating, which the model does not consider. All these
factors contribute to the differences observed between
the model predictions and the experimental data. Further
work is needed to address these potential issues and refine
the model. Next steps could involve using hyphenated
TGA methods, such as TGA-MS and TGA-FTIR, to iden-
tify specific reaction products and their concentrations.
Thiswould clarify the constituent reactions contributing to
the apparent reaction steps. A better understanding of the
degradation mechanisms could improve modeling of the
relationship between heating rate and kinetic parameters.
Additional heating rate experiments may also highlight
the link between apparent reaction steps and underlying
reactions. Another enhancement would be relating the
predicted generation of gas products to the internal pres-
sure experienced in a ceramic green body. This study does
not account for gas transport, which plays a significant
role in binder removal. Nevertheless, despite these com-
plexities, the simplified model presented here provides a
sufficient fit for practical applications.

5 CONCLUDING REMARKS

This study provided insights into the thermal decompo-
sition kinetics of a simplified CerVPP resin at different
heating rates. The decomposition of this resin, as stud-
ied by TGA, revealed three main apparent reaction steps,
identified using peaks in the rate ofmass loss. These appar-
ent reactions were treated as independent from each other.
Mass loss peakswere deconvolved using the Fraser‒Suzuki
function. It was shown that peak deconvolution using this
function was effective in modeling DTG peaks, particu-
larly at a 0.5 K/min heating rate. The DTG data were
deconvolved into three apparent decomposition steps.
Kinetic model fitting using non-linear regression was
applied to each deconvolved apparent reaction step. The
kineticmodel identified a reaction order, activation energy,
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and pre-exponential factor for each deconvolved reaction
peak. The relationship between the kinetic parameters
and heating rate was explored by comparing power law
and second-order polynomial relationships. The developed
model was shown to be capable of predicting the twomain
apparent reaction peaks, measured using DTG, of thermal
debinding using a multi-segment heating rate program.
When used by itself, this model can allow a practitioner
to quickly develop a heating rate program that has a wide
decomposition range, which allows time for the gas gener-
ated during debinding to escape. This model could also be
combined with a gas transport model to tie the predicted
thermal behavior to pressure gradients in the part that
are often the source of cracking and delamination. Future
work should include a more thorough understanding of
ceramic‒resin interactions, specific reaction mechanisms,
and the inclusion of isothermal treatments. Ultimately,
this study contributes to the ongoing effort to developmore
accurate and reliable models for predicting the thermal
decomposition of materials, which is essential for improv-
ing the binder removal process in CerVPP and optimizing
thermal processes in general.
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