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Static Fatigue of Optical Fibers in Bending

M. JOHN MATTHEWSON™* and CHARLES R. KURKJIAN*
AT&T Bell Laboratories, Murray Hill, New Jersey 07974

A two-point bending technique for making static fatigue mea-
surements on optical fibers is described which allows large
quantities of data to be rapidly and conveniently gathered.
Statistical analysis is used to compare the times to failure of the
method with those of the commonly used mandrel and tensile
methods. Direct experimental comparison of the two-point
bend and tensile methods shows that while the times to failure
are generally longer for two-point bend than tension, the essen-
tial fatigue behavior is identical for the two methods.

I. Introduction

STATIC fatigue measurements of lifetime as a function of constant
applied stress are widely used to make in-service lifetime pre-
dictions but are experimentally inconvenient because of scatter in
the failure times. This scatter is typically many times the scatter in
the apparent strength, which itself may be large. Even high-
strength optical fiber which has a narrow distribution of strength
may have over 50% scatter in the time to failure, and a minimum
of 20 specimens is needed for each applied stress to produce
statistically reliable results. A further inconvenience is that failure
times should be made as long as possible to optimize the reliability
of extrapolations to longer-term in-service conditions. Clearly,
making long-time measurements on many specimens is an onerous
task requiring large amounts of time and equipment. We describe
here a two-point bending technique for optical fibers which tests
many specimens simultaneously and, since it is compact, enables
many sets of specimens to be packed into an environmental cham-
ber alleviating the long-duration problem. The advantages and
disadvantages of the technique will be discussed and a detailed
comparison will be made with the other two techniques that are
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commonly used, namely tension and mandrel bending.

II. Apparatus

Figure 1 is a schematic diagram of the apparatus used for the
three techniques under discussion.

In the tensile technique, described in detail by Krause,' a length
of fiber is gripped at each end and pulled in tension using weights.
It is usually inconvenient to immerse the grips in the test environ-
ment and therefore the fiber is threaded through an environmental
chamber. If bare fiber is to be studied, the polymeric protective
coating applied during manufacture may be stripped from the cen-
ter section by immersion in 200°C concentrated sulfuric acid.
However, the coating must be intact at the grips and where it passes
through seals into the environmental chamber to avoid mechanical
damage at these locations.

The mandrel bending technique involves winding a length of
fiber around a precision-ground mandrel. The fiber must be coated
by a protective polymer layer to avoid damage from contact with
the mandrel and adjacent windings. The bending stress is deter-
mined by the mandrel radius and the entire mandrel is placed in the
environment to be studied. Holding the ends of the fiber in place
is a major drawback with this technique; mechanically gripping the
ends or gluing them in place produces stress concentrations which
cause premature failure. Tape may be wrapped around the ends but
it must be chosen carefully since the adhesive can provide an
aggressive environment which again leads to premature failure.
Bouten and Wagemans® described an ingenious modification in
which the fiber is wound around two adjacent mandrels of differing
radii. Gluing onto the larger radius mandrel produces stress con-
centrations which are insignificant compared with the stress gener-
ated in the fiber section passing around the smaller mandrel.
Bouten and Wagemans applied a glue line along the entire length
of the fiber winding so that each turn of fiber is a small but separate
specimen and a statistically reliable lifetime estimate can be made
from one winding. However, whatever gripping technique is used
it must be significantly more resistant to the test environment than
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Fig. 1. Schematic diagram of the apparatus used by the
three techniques for static fatigue testing of optical fiber.
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the fiber itself and this is difficult to realize in practice for the
aggressive environment used in accelerated testing.

The two-point bend technique, first described by Cowap and
Brown,” involves bending a short length of fiber double and in-
serting it into a precision-bore glass tube. Many specimens may be
inserted into one tube and the stress applied to them is determined
by the tube internal diameter. Several specimens may be inserted
at once using the insertion tool shown in Fig. 1. Because the
“teeth” are inclined, the tool may be withdrawn from the tube
without disturbing the fiber loops.

Fracture of the fibers is monitored acoustically. The transducer
output is passed through a trigger circuit which emits a pulse
whenever the output exceeds a certain level. The pulses may be
monitored by a chart recorder, though a computer is more con-
venient in more rapid experiments where the short interval between
pulses requires better frequency response. The chart recorders rep-
resent the most expensive part of the apparatus, but the required
number of channels can be simply halved. If the output of two
trigger circuits are subtracted and applied to one recorder channel,
pulses from one circuit produce positive going pulses on the chart
while the other produces negative going pulses. In this way each
recorder channel can monitor two separate experiments. Coated
fiber must be inserted into the tube to avoid mechanical damage but
the properties of bare fiber can be investigated by stripping the
fiber in situ by sucking hot sulfuric acid into the tube or by im-
mersing the tube in a bath of acid. Coated fibers may be placed in
the tube as close as 2 mm apart without interaction but bare fibers
should be at least 10 mm apart and the bend should point down-
ward so that debris from fractured fiber falls onto the compressive
side of the adjacent fibers.

The two-point bend technique has features which may in some
applications make it more useful than the tensile or mandrel tech-
niques, or both:

(1) Many specimens are handled and tested at once. It is as
convenient to test several in two-point bend, giving a reliable
time-to-failure estimate, as it is to test just one specimen using the
other techniques. Thus although the actual time to failure in blend-
ing is somewhat longer, the total time, and in particular the
“operator” time, may be substantially less.

(2) There are no gripping problems in two-point bend.

(3) The tube is compact and, once inserted, the fibers are
protected from accidental damage. It is therefore simple to apply
a test environment either by immersion or by passing fluid through
a tube.

(4) Small quantities of fiber are used — an advantage if sup-
plies are limited.

(5) The behavior of both coated and bare fiber can be exam-
ined. Bare fibers cannot be used in mandrel bending. If bare fiber
is examined in tension, coated regions must be preserved for grip-
ping and passing through environmental seals. Difficulties arise if
the bare section is stronger than the coated section; fracture in the
bare section can be assured by necking it down, but in general the
properties of the fiber will be changed by heating to the softening
temperature.

(6) Static fatigue in two-point bend directly corresponds with
the dynamic strength test in bending described in detail by Mat-
thewson, Kurkjian, and Gulati.* There is no dynamic strength test
corresponding to mandrel bending.

(7) The stress distribution experienced by the fiber in two-
point bend directly corresponds to the practical situation where a
fiber cable is bent around a corner.

(8) The technique is compact, inexpensive, and easy to use.
Only a small amount of equipment is needed to monitor several
hundred specimens under test simultaneously.

There are, however, some characteristics of two-point bending
that may make it an inappropriate technique in certain situations:

(1) The tested length of fiber is small and two-point bend
results are not useful for predicting the behavior of kilometer
lengths of fiber. However, this is also true of mandrel bending and
tension unless multikilometer lengths of fiber are tested.

(2) Because of the stochastic nature of strength, the mean
lifetime of a fiber depends on its length. It is not possible to control
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the length of fiber under test as it just depends on the tube diameter.

(3) The mean lifetime depends on the tested length of speci-
men but the tested length depends on the tube bore size (i.e., the
applied stress) which itself affects the lifetime. This effect needs to
be understood before results can be compared with other methods.

(4) The times to failure for two-point bend are longer than
those for the other methods because of the shorter tested length.
However, the increased duration of experiments is more than com-
pensated by the ability to test many specimens simultaneously.

(5) The technique is not suitable under conditions where sig-
nificant fatigue occurs during specimen mounting and preparation
and environmental equilibration. This effectively limits the applied
stress to less than 3 GPa for coated fiber and to 2 GPa for fiber
stripped in hot acid while in the tube. The minimum time to failure
is limited to the time it takes the specimen to equilibrate with the
test environment. This problem can be avoided by mounting speci-
mens under low stress in the dynamic bend apparatus® and loading
rapidly to the required applied stress after equilibration with the test
environment. However, only a few specimens can be tested at once
and one of the main advantages of the two-point technique is lost.

(6) Bare fibers cannot be inserted into the tubes without dam-
age. The fatigue properties of bare fiber that has been treated
in some way under zero stress cannot be determined with this
technique.

The first four disadvantages concern the effect of specimen size
on the time to failure. In order to fully understand this, the effective
tested length must be calculated and its effect on the statistics of
failure must be understood.

III. Statistical Analysis of Fatigue

The statistical nature of the fiber lifetime results from two
sources; first, from the stochastic nature of strength which is deter-
mined by strength-reducing surface defects that are distributed in
severity and position, and second, from diameter fluctuations
along the length of the fiber. Generally one or other of these
sources will dominate and determine the statistics. For example,
Kurkjian and Paek® found that all variation in apparent strength of
high-strength furnace-drawn silica fibers could be accounted for by
diameter fluctuations and that variation in real strength was insig-
nificant. Conversely, the properties of a fiber showing a broad
strength distribution, which in the case of optical fiber is virtually
any fiber but high-quality as-drawn material, will be determined by
the distribution of defects. Both sources of lifetime variations will
now be considered.

(1) Statistics of Strength Variation

In order to develop a statistical analysis it is necessary to know
how the time to failure depends on the applied stress and also on
the distribution of initial strengths. Neither behavior is known a
priori but reasonable relationships may be chosen and justified
empirically.

First, we will consider fibers containing flaws that behave like
small cracks. The well-known power-law relationship between the
crack growth velocity, ¢, and the applied stress intensity factor, Kj,
has been found to hold empirically for a wide range of ceramics:

¢ = AKT 1
where A depends on the environment, and n, the stress corrosion
susceptibility parameter, is roughly independent of the environ-

ment and is often considered a material property. This equation
may be integrated by using the fracture mechanics relation

Ki = Yo.c'*? Q)
to give the time to failure
1 n—2

g = 2 1 ag;
7T n —2AY K on

3

where Y is a factor of order unity dependent on the crack geometry,
Kic is the critical stress intensity factor, g is the initial strength,
and o, is the applied stress (e.g., Ritter®).
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High-strength silica fibers do not contain well-defined cracklike
defects; if this were the case, cracks would be of atomic dimen-
sions and could not be described by continuum fracture mechanics.
The n value for buik silica is around 40 as measured from both
crack growth experiments (e.g., Sakaguchi, Sawaki, Abe, and
Kawasaki’) and fatigue experiments (e.g., Ritter and Sherburne?®).
This compares with the accepted value of between 20 and 25 for
fibers (e.g., Wang and Zupko®). Recent work by Dabbs and
Lawn'® sheds light on the nature of the high-strength defects. They
find an n of 40 for “postthreshold” microindention flaws, after
correction for residual stresses, and an n of 20 for “subthreshold”
flaws. These latter flaws represent strengths in excess of 300 MPa
and are not associated with the presence of cracks.

Empirically, a power-law relationship between # and o, is ob-
served for fibers and we may assume

y=8% @
Ta
where p = n — 2 for cracklike flaws but for noncracklike flaws 14
is not known, but will not differ significantly from n — 2 since if
¢ now represents some measure of flaw severity we might expect
Eq. (1) to still hold empirically. Equation (2) will not necessarily
hold but since its effect is to provide the “2” in the terms “n — 2"
in Eq. (3), the difference between p and n — 2 will be small as
n > 2. The analysis will be developed for general p, but p will be
evaluated as n — 2 in all calculations.
The two-parameter Weibull distribution for the initial strength
will be assumed, giving the cumulative probability of failure by a
stress o in the absence of fatigue:

Flo,A) = 1 — exp[—(ai)m:;] )

where A is the specimen surface area and A, is a parameter of
dimension area and size unity which gives oy the dimensions of
stress. For an element of area, dA, the probability becomes

dF (o, dA) = (1)@4 ®
Op Ao
Rearranging Eq. (4) gives
g; = <th+':) ’ ™

and failure occurs in the absence of fatigue if o; < ¢. Therefore,
in the presence of fatigue, the probability that failure occurs by a
time ¢ is obtained by substituting the expression for o; in Eq. (7)
for o in Eq. (6).

\™ d4
dF (1, dA) = (g‘;) = ®)
) 0

Integration of the applied stress, o, over the entire specimen
surface gives the cumulative failure probability

mlpdA
ool - ()]
1 - exp[— f ft, 0,) j—':] ©®

This integration will now be evaluated for the three test methods
under discussion.

(A) Uniaxial Tension: For the tensile test o, is a constant and
the integration of Eq. (9) gives

\™ 2,
f flp o) dA = (g‘;) Z’ (10)

where r and /, are the fiber radius and tensile test length.,
By comparison with Eq. (5) we see that the failure time follows
a Weibull distribution with modulus

m = m/p (11

F (tft A)

Vol. 70, No. 9
TENSION
r.SIN ¢ NEUTRAL
1 A AXIS

COMPRESSION

Fig. 2. Section through the bent fiber.

and a mean failure time

7= B"G(i) "4+ 1m) 12)

os \2arl,

where I'(x) is the gamma (or factorial) function which may be
evaluated from polynomial approximations (e.g., Hastings'").

(B) Mandrel Bending: In mandrel bending the fiber experi-
ences a uniform bend along its length. The surface tensile stress
varies around the fiber circumference (Fig. 2)

oP) = Opas sin @
where 0., is the maximum tensile stress in the fiber surface.

’
R +r

T nax

where R is the mandrel radius, 7’ is the fiber radius including the
coating material, and E is the fiber Young’s modulus. A suitable
surface area element is

dA = lrd¢

where /. is the length of fiber wrapped around the mandrel. Inte-
gration of Eq. (9) over the tensile half of the specimen surface
gives

f S0 dA = (";’ ;,;‘) 2:)”1(%) (13)

where

r(x + 1)
w2 172
Ix) = f sin” ¢ df = T 2

X
N2

Equation (13) represents a Weibull distribution again with

m, = m/p

+1

and a mean time to failure
. _Ba[ A
" 2rl,, I(nm,)

(C) Two-Point Bending: The analysis for the two-point
bend, described in Matthewson, Kurkjian, and Gulati,* gives

0(8,8) = Gmae sin'? @ sin ¢
(see Fig. 3) where Oy is the maximum stress in the fiber surface
2r

— ar

] "L+ 1/m,) (14)

O max

ae = 1.198E
> d
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Fig. 3. Geometry of the bent fiber in two-point bending.

and d is the internal tube diameter. A suitable area element is
Er®
dA = ————df d
O max 5in*? @ ¢

Equation (9) gives

LOha: \™? 4Er* [nm — p\ [nm
If(tf’ o.) dA ( BOax ) AoOmax 2p P

(15)
Again a Weibull distribution with
m, = m/p
and a mean time to failure
i = g+'{3 n:wj‘“l ]m It + 1/m) (16)
- 4Er21< . )l(nm,)

All three test methods give Weibull distributions for the times to
failure with the same exponent, m, = m/p. For cracklike flaws
m, = m/(n — 2), which is in agreement with the results of an
analysis for tensile testing by Key, Fox, and Fuchs.'? The mean
times to failure are related to the applied stress (g, for tension and
Omax for bending) by a power law giving an effective stress corro-
sion parameter, n.y, of n for tension and mandrel bending and
n(1 — p/nm) for two-point bend, which is little different from n
for large n.

The mean times to failure will now be examined in more detail.

(D) Time-to-Failure Ratios: From Egs. (16) and (12) the
ratio of the time to failure in two-point bend and tension is given
by equating o, t0 O pma

f _

t

- l, T m,
i’_E—-_ r nm, — 1 an
21( '2 >I(nm,)

and depends on the applied strain, the tensile specimen aspect
ratio, and a function of n, p, and m. The ratio of failure times for
two-point bend and mandrel bending from Egs. (16) and (14) is

i2 Omax lm 1 Vme
Im E r nm, — 1 (18)

2

Figure 4 shows the variation of the time-to-failure ratios, Eqs.
(17) and (18), with the stress corrosion parameter, n. The results
are calculated for 1-m-long tensile and mandrel fibers of diameter
125 pm with an applied strain of 5%. It is assumed that the Weibull

STRESS CORROSION PARAMETER, 7

Fig. 4. Variation of the time-to-failure ratios with n for two-point bend
compared to tension and mandrel bending.

modulus of the distribution of inert strengths is 100 and
p = n — 2. For a typical silica fiber of n = 20, the times to
failure in two-point bending are approximately 7 and 4 times longer
than those for the tensile and mandrel tests. These factors increase
rapidly with increasing n.

(E) Equivalent Tensile Length: The equivalent tensile length
will now be calculated for each bend method. This is the length of
fiber that, when pulled in tension, gives the same time to failure as
a bend specimen subjected to the same stress.

Equations (14) and (12) give the time-to-failure ratios for man-
drel bending and tension

Tm L, =

v [E. I(nm,)] 1

and when this ratio is equated to unity, the equivalent tensile
length is
I
b = 220 20)
T

Equating the ratio to unity in Eq. (17) gives the equivalent length
for two-point bending

nm, — 1
E 21< 3 >I(nm,)
Iz =r— 21)

Omax ™

Figure 5 shows the variation of the equivalent lengths, given by
Eqgs. (20) and (21), with stress corrosion parameter, n, calculated
using the same parameter values as Fig. 4. For values of n above
about 10 the equivalent length is roughly constant at ~17 mm for
two-point bending and 40 um for a 1-m-length mandrel bend
specimen. Therefore, all three methods test quite different effec-
tive specimen sizes.

(2) Statistics of Fiber Diameter Variation

The scatter in the fiber diameter results in a scatter in the applied
stress when the fiber is under load. If the scatter in the fiber
strength is insignificant, the fiber will fail at the minimum or
maximum diameter (depending on the test method) and the di-
ameter fluctuations must be characterized before predictions from
apparent strength statistics can be made. However, the nature of the
diameter fluctuations, which depend on the fiber draw parameters,
are not easily predicted and vary from fiber to fiber. Krawarik and
Watkins'> examined diameter distributions of early fibers and
found their spectra were similar to low-pass filtered white noise
with little evidence of periodic fluctuations. The diameter distribu-
tions could be approximated by the Gaussian function with a stan-
dard deviation of ~1 um. However, improvements in diameter
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Fig. 7. Periodic fiber radius fluctuations: (a) radius as a function of
position, (b) minimum radius over a length L as a function of position
along the fiber.

control equipment now have reduced the deviation to ~0.25 um.

Figure 6 shows continuous measurements of fiber diameter
taken during the drawing process for 125-um-diameter silica op-
tical fiber and Fig. 6(a) shows a region in which the fluctuations
are random and have a broad-band noise spectrum and are prob-
ably due to intrinsic properties of the silica, such as local vis-
cosity fluctuations that occur when the fiber is molten in the
draw furnace.

The fiber diameter is controlled in the drawing process by moni-
toring it at some distance, D say, from the draw furnace. The
output from the diameter transducer is used as a feedback signal to
control the draw tension which in turn controls the diameter. Since
the position of the diameter transducer is spatially separated from
the neckdown zone in the draw furnace, it is possible to set up
periodic diameter oscillations if the properties of the feedback loop
are not carefully chosen and such oscillations are apparent in Fig.
6(b) and approximate the triangular waveform of Fig. 6(c). This
fiber was drawn at unusually low speed to aid resolving short-
length diameter fluctuations and the feedback parameters were not
optimal. In the absence of damping the oscillations would have a
half-wavelength equal to D but damping in the feedback loop
increases this wavelength so that the measured value of A = 2m is
consistent with D = 0.5m.
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idealized periodic fluctuation.

Specimens of length greater than the wavelength will contain at
least one diameter minimum and will fail there in tension and the
apparent strength statistics will depend on the random distribution
of the values of the minima. In contrast, specimens shorter than A
do not necessarily contain a diameter minimum and so will sample
the complete diameter range. Provided random fluctuations are
much smaller than a, the amplitude of periodic fluctuations, aver-
aging for several specimens will tend to remove them, giving
results which are characteristic of the underlying periodic varia-
tion. Therefore, the statistics of long and short (compared to A)
specimens would be of a different nature and depend on different
quantities. They will not correlate in general and it is therefore not
possible to infer the properties of long specimens from those of
short if periodic fluctuations dominate.

(A) Periodic Diameter Fluctuations: We will first consider
only the periodic fluctuations and assume that the random fluctua-
tions are of smaller amplitude so that they average out over several
specimens. Figure 7(a) models the radius as a triangular waveform
of wavelength A and peak aplitude a. A triangular wave is chosen
for mathematical simplicity but the analysis can be extended to
describe any waveform. Figure 7(b) shows the minimum radius on
a specimen of length L as a function of its position, /, along the
fiber and is given by

41 - A-L
minl\l, = — =1 + 0= =
Fmin(l, L) a(A ) r ( 1 3 )

T AT
= - — r
a PO

giving a mean value
Fin = ;[1 - %%(2 - L/A)] =7(1 - ) 22)

For a typical silica optical fibera = 0.5 umand7 = 62.5 um so
that & ranges from O for L = 0 and 1/125 for L = A. However,
measurements of both strength* and fatigue (see Section IV) in
tension (L = A) and bending (L/A < 1) give results that differ by
significantly more than is permitted by Eq. (22). Hence, the effect
of random diameter fluctuations dominates over periodic fluctua-
tions observed in this fiber.

(B) Random Diameter Fluctuations: In tensile experiments
the load, P, is conserved along the fiber. The nominal (o.,..) and ac-
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tual applied stresses (o,) at any position on the fiber are given by

P P
T nom = ;—_27 T = ?
-2
r .
0. = Owm—; (tension) (23)

In mandrel bending the radius of curvature, R, of the fiber is
constrained to be constant

E= E<
nom = L=, O = L+
7 R R

r

Ts = Opom = (mandrel bend) (24)

For two-point bend, the bending moment M, is conserved
EI/R = M,

where / is the second moment of sectional area and depends on
r*, hence

-4
g, = o-n,,,,r—4 (two-point bend) 25)

~

Equations (23), (24), and (25) imply that failure occurs at the
position of minimum radius in tension and two-point bend but at
the position of maximum radius in mandrel bending. Therefore, a
Weibull distribution cannot be used to describe radius fluctuations
for all three cases as it cannot be modified to simultaneously
describe the statistics of the minimum and maximum radii since the
minimum radius in a length / diverges as / becomes very small; the
maximum radius is therefore unbounded for this distribution. Other

suitable distributions could be used, such as the normal distribu-
tion, but the mathematics would rapidly become intractable and for
this reason the statistical analysis of radius fluctuations will not be
considered further.

IV. Experimental Procedure

Figure 8 directly compares static fatigue results obtained using
both two-point bend and tension techniques. A standard 125-um
silica optical fiber coated with a UV-curable polyurethane-acrylate
protective coating was used and the test environment was 90°C
distilled water. Attempts to obtain data using mandrel bending
were unsuccessful since no adhesive system could be found for
fixing fiber ends that could withstand this aggressive environment
for more than an hour or so.

Sixty bend and ten tensile specimens were used for each data
point and, despite the considerably larger number of bend speci-
mens and their longer time to failure, it took appreciably less time
to obtain all the bend data. Error bars representing the confidence
in the estimate of the mean time to failure are typically of the size
of the plotted data points or smaller and are omitted.

The two sets of data show identical behavior and are merely
shifted in time from one another. From 107 to 10° s linear fatigue
is observed with a slope giving a value for the stress corrosion
parameter, n, of between 40 and 50. Above ~10°s, n again
increases, suggesting perhaps either a fatigue limit or a return to its
previous higher value. At times to failure of less than ~10 s the
bend results show an upward turn which is an artifact— the speci-
mens do not have time to equilibrate with their environment on this
time scale. This fatigue behavior is complex and will not be
discussed in detail here. Suffice to say that we have attributed
the change in slope of n going from ~50 to ~1 to an exaggera-
tion of the change (20 to 7) observed for uncoated fiber in hot
water (Krause') and the coated fiber in high humidity (Wang
and Zupko®).

The two-point bend data are represented analytically in Fig. 8 by
cubic splines (solid line) from which the predicted tensile behavior
(dashed line) is calculated using Eq. (17) and using the tensile test
length, [, = 0.18 m and assumingm = 100 andp = n — 2. The
agreement between the tensile data and the predictions is only
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Fig. 8. Direct comparison of fatigue data using the tension (circles)
and two-point bending (squares) techniques for polymer-coated optical
fiber in 90°C water.

moderate as might be expected, first, because the fatigue is non-
linear, but more importantly the statistical nature of the failure
times is due to scatter in the fiber diameter, rather than in the fiber
strength, as is assumed in deriving Eq. (17). While it is not possible
to infer tensile results from bend data or vice versa, the important
point to note from Fig. 8 is that bending and tension show the same
form for the environmental behavior. In other experiments using a
variety of environments we have not observed any significant
differences between the bending and tensile fatigue behavior. We
may therefore conclude that both techniques are observing the
same physical processes.

The variability in the times to failure for this fiber, at least
initially, is due to fluctuations in the applied stress caused by
diameter variability. The gradient of the log (applied stress) versus
log (time to failure) curve is identified with the local value of —1/n
from Eq. (4):

d(log o, 1

7((_10gg_tf)) == (26)
giving
so that

v, = nv, 28)

where v, and v, are the dispersions (defined as the ratio of standard
deviation to mean) for the time to failure and applied stress. High-
strength fibers typically have a Weibull modulus of m = 100,
giving a value of v, of 1.27%. Figure 9 shows the predicted
behavior of the dispersion in the time to failure calculated by
obtaining the variation of »n by differentiating the spline represen-
tation of the fatigue data in Fig. 8. Also shown are experimentally
determined values for dispersion with error bars representing 95%
confidence intervals on the mean. There is close agreement be-
tween experiment and predictions at all but the smaller dispersions
where extraneous experimental errors contribute to the variability;
there is therefore internal consistency in the data. The value n may
be calculated either from the dispersion or from the fatigue curve;
however, the latter method gives a value of n averaged over an
interval of time while the former gives the local value. For ex-
ample, an applied strain of 3.3% gives a mean time to failure of
80000 s with a dispersion of 30%. In the absence of longer-term
data, a “by-eye” examination of Fig. 8 would lead one to the
erroneous conclusion that the fatigue curve can be extrapolated
to longer time/lower stress with of high value of n = 50. How-
ever, the dispersion is too low to support this conclusion and
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Fig. 9. Experiment and predicted behavior for the dispersion in the
times to failure.

gives warning of the abrupt change of fatigue behavior at longer
times/lower stresses.

While Kurkjian and Paek® showed that diameter variation domi-
nates for short-term strength measurements, it does not necessarily
follow that this should be the case for long-term fatigue experi-
ments. In fact, the rather drastic changes in dispersion shown in
Fig. 9 may well signal changes in mechanism. However, it is
probably safe to assume that the flaws subjected to the largest stress
intensity factor lead to failure in both cases. Whether diameter
fluctuations dominate or not though, dispersion measurements will
not detect the difference since, if fatigue were controlled by
strength fluctuations

V, = PDVo (29)

from Eq. (1) and the fact that the dispersion of a Weibull distribu-
tion is approximately inversely proportional to the modulus. p and
n differ by a small amount and Eqgs. (28) and (29) are indistinguish-
able within the experimental uncertainty.

V. Discussion and Conclusions

The two-point bend method for the static fatigue of optical fibers
has been shown to be a useful technique that readily produces large
amounts of data. It is a particularly useful method for aggressive
test environments which would make gripping the fiber a problem
for other techniques. The experimental apparatus is inexpensive
and compact, so that the technique is particularly suitable for long-
term testing of large numbers of specimens under simulated operat-
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ing conditions, as well as under accelerated laboratory conditions.
A very small amount of fiber is under stress in the two-point
bend test and, because the statistical distributions of fiber strength
and diameter are not known a priori, it is not possible to predict
tensile behavior from bend behavior. However, since one is con-
cerned in practice with multikilometer lengths, neither 1-m tensile
specimens nor bend test specimen can be used to infer multi-
kilometer statistics. This is not only because of the large difference
in lengths, but also because the natures of the strength-determining
flaws in long fiber lengths are often different and can sometimes
be associated with extrinsic effects such as particulate con-
tamination of the silica surface during the drawing process. These
types of defects may well show different fatigue behavior, though
the “subthreshold” flaws of Dabbs and Lawn,'® which may model
them, do show the same value for » as high-strength fiber, so that
all types of flaws may well fatigue in a similar manner.
Experiments have shown that while two-point bending results
are different from the tensile results, the form of the fatigue be-
havior is identical. Bending has been shown to produce internally
consistent data in the sense that dispersion in the time to failure is
consistent with the overall fatigue behavior. Also, because bending
can easily produce much data, statistically significant estimates of
dispersion can be obtained which supply extra information.

Acknowledgments: We thank J. T. Krause for useful discussions and R. C.
Huff for providing the fiber diameter data.

References

!1.T. Krause, “Zero Stress Strength Reduction and Transitions in Static Fatigue of
Fused Silica Fiber Lightguides,” J. Non- Cryst Solids, 38-39, 497-502 (1980).

2P.C. P. Bouten and H. H. M. Wagemans, “Double Mandrel: A Modified Tech-
nique for Studying Static Fatigue of Optical Fibers,” Electron. Lers., 20 [7] 280-81
(1984).

3S.E Cowap and S.D. Brown, “Static Fatigue Testing of a Hermetically Sealed
Opucal Fiber,” Am. Ceram. Soc. Bull., 63 [3] 495 (1984).

“M. J. Matthewson, C. R. Kurkjian, and S. T. Gulati, “Strength Measurement of
Optical Fibers by Bending,” J. Am. Ceram. Soc., 69 {11] 815-21 (1986).

SC.R. Kurkjian and U.C. Paek, "Smgle-Valued Strength of “Perfect” Silica
Flbers ” Appl. Phys. Lett., 42 [3) 251-53 (1983).

S1.E. Ritter, Ir., Probablllty of Fatigue Failure in Glass Fibers,” Fiber Integr.
Opt , 1[4] 387-99 (1978).

’s. Sakaguchl Y. Sawaki, Y. Abe, and T. Kawasaki, “Delayed Failure in Silica
Glass,” J. Mater. Sci., 17, 2878-86 (1982).

*IE. Ritter, Jr., and C.L. Sherburne, “Dynamic and Static Fatigue of Silicate
Glasses,” J. Am. Ceram. Soc., 54 [12] 601-605 (1971).

9T.T. Wang and H. M. Zupko, “Long-Term Mechanical Behaviour of Optical
Fibres Coated with a UV-Curable Epoxy Acrylate,” J. Mater. Sci., 13, 2241-48
(1978).

I°T. P. Dabbs and B. R. Lawn, “Strength and Fatigue Properties of Optical Glass
Fibers Containing Microindentation Flaws,” J. Am. Ceram. Soc., 68 [11] 563-69
(1985).

C. Hastings, Jr., Approximations for Digital Computers. Princeton University
Press, Princeton, NJ, 1955.

2p L. Key, A. Fox, and E. O. Fuchs, “Mechanical Reliability of Optical Fibers,”
J. Non-Crysx Solids, 38—39 463-68 (1980)

3p. H. Krawarik and L.S. Watkins, “Fiber Geometry Specifications and Its Re-
lation to Measured Fiber Statistics,” Appl. Opt. 17, 3984-89 (1978). a



