Strength Measurement of Optical Fibers by Bending
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A bending technique for the strength measurement of glass
fibers is described and an analysis is presented which deter-
mines the effective tested length as a function of the statistical
parameters which describe the fracture properties of the fiber.
The analysis is used to compare strength data determined in
both tension and bending for various representative fibers. It
is found that the tensile strength cannot be predicted from the
strength in bending and vice versa because the tested lengths
differ by at least 3 orders of magnitude. Thus, while bending
does not replace tension as a measurement technique, it does
provide additional valuable information about the flaw size
distribution.

I. Introduction

HE strength of glass fiber can be determined by a tensile tech-

nique in which a length of fiber is gripped at each end and
pulled in tension until it fails. The technique provides the failure
load from which the failure stress can readily be calculated and
either of these quantities is commonly used as a realistic measure
of fiber strength for design purposes.

An alternative method of bending the fiber may be used since the
strength determines the radius of curvature at fracture. A loop' or
knot® test may be used, but these tests suffer from the disadvantage
that the size of the loop or knot at fracture is difficult to determine.
Also, a bare fiber will sustain damage by rubbing against itself. A
bending method, first described in detail by France et al.,* which
avoids these problems is critically examined here. Shown sche-
matically in Fig. 1, it involves constraining a bent loop of fiber
between two ground and polished faceplates which are then
brought together until the fiber breaks. The fiber is held sym-
metrically between the faceplates by clamping to the guide plate.
Alternatively the fiber can be held by grooves in the faceplate but
this arrangement may not be suitable for bare ‘fibers as the un-
protected fiber surface may be severely damaged by contact with
the edge and bottom of the groove (which is not easily polished to
a smooth enough surface) leading to fracture at the faceplates rather
than in the bent section.

The faceplates are brought together by a computer-controlled
stepper motor which is halted when the fiber fracture is sensed by
an acoustic detector. The failure strain is then calculated from the
guide plate separation at fracture and the fiber diameter.

Bending has several attractive features and advantages over ten-
sile testing:

(i) There are no gripping problems. Fibers with a compliant
coating (e.g., silicone) or a degraded (e.g., by heat or water)
higher modulus coating cannot easily be gripped in tension. Fibers,
whether coated or uncoated, can readily be broken in bending,
though for reasons of accuracy it may be advisable to strip any
coating material.
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(ii) The strength of a fiber whose tested section is stronger than
its gripped section cannot be tested in tension. This situation can
occur, for example, when investigating the strength of fibers at
liquid-nitrogen temperatures since it is not simple to cool the grips.

(iii) Only a small length of fiber is subjected to stress; there-
fore, it is easy to “zero in” on a region of interest if it is small.

(iv) The bending technique is readily made highly accurate (in
a relative sense, see below for absolute accuracy); it is easier to
accurately measure the separation of the faceplates than the ana-
logue output of a load cell. The faceplate separation at fracture is
typically =~2000 um for a high-strength fiber and the accuracy to
which this is determined is the step length of the stepper motor. A
1-um stepper motor was used in this work—a 0.1-um stepper
motor could be used for higher accuracy but the maximum achiev-
able loading rate (faceplate velocity) is proportionately lower.

(v) The system is easily computerized, the components are
readily available and inexpensive, and the apparatus is compact
and simple to use.

(vi) The fiber can easily be immersed in an environment.
Liquid-nitrogen strengths have been found with comparative ease.
Alternatively a gaseous or liquid environment can be blown or
dripped on the small section of fiber under test, obviating the need
for an environmental chamber. If the gas or liquid stream is di-
rected toward the compressive side of the bent fiber, there is little
risk of damage by impact with particulate contaminants influencing
the results.

(vit) Since only a small length of fiber is under a high stress,
only a small length of fiber disintegrates into dust at fracture. The
fiber diameter close to the fracture can then be measured.

(viii) Only a small length of fiber (=3 cm) is used. This is
clearly an advantage if only small quantities of fiber are available.

However, there are some problems with the bending technique.

(i) Absolute accuracy may not be as good as in tension since
it is difficult to accurately determine the position of zero separation
of the faceplates. Also, the overall fiber diameter is subtracted
from the faceplate separation before calculation of the fracture
strength and this can give significant errors for coated fibers since
the coating thickness and concentricity can be variable, but more
importantly, the coating can deform under the contact stresses thus
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Fig. 2. Geometry of the bent fiber.

reducing the effective fiber diameter. This last problem can be
eliminated by stripping the coating material before testing.

(ii) For strong fibers (strain to failure =1%) the linear elastic
analysis for the bend geometry becomes inaccurate since it as-
sumes small strains. However, the results are still qualitatively
correct, though quantitatively the error in the predictions increases
with increasing strain (i.e., strength).

(iii) The tested length of fiber in bend is very small and there-
fore bending results are not useful for inferring the strength statis-
tics of kilometer lengths of fiber.

(iv) The mean strength of a material depends on the specimen
size because of the stochastic nature of the distributions in position
and size of strength-reducing defects; the larger the specimen, the
greater the probability of finding a larger defect. In tension it is
possible to predetermine the length of fiber that is to be tested;
however, this is not the case for bending as the length of bent fiber
depends on the radius of curvature at fracture and hence on the
strength. Also, the strength depends on the tested length, which
itself depends on the strength! A correction for this effect must be
made before quantitative comparisons can be made between bend
data for fibers of different strengths and between bend and tensile
data for the same fiber.

The purpose of the work described here is to examine these last
points in detail and to directly compare strength measurements
made in tension and bending.

II. Analysis

(I) Geometry of the Bend

The stress distribution around the bent fiber must be known
before the strength of the fiber can be determined from the face-
plate separation at fracture. Gulati* presented an analysis of the
bend which is described below. France et al.® independently ana-
lyzed the bend, and their results agree with those of Gulati, though
little detail of the analysis is given.

Figure 2 defines the geometry of the bend and the coordinate
system that will be used. The radius of curvature, R, at the point
(s, 8) is given by

dé/ds = 1/R ¢))

Taking moments about this point and using the well-known bend-
ing beam equation we have

E%=—Fx—M (V)

where F and M are the force and moment acting on the fiber, as

where E is the Young’s modulus of the fiber and I the second
moment of cross-sectional area. Using the relations

dx/ds = —cos 8 (4a)

dy/ds = sin 0 (4b)
we find

d¢ _F

Ez- = E—I cos @ 5)

which is readily integrated to give
do _ (2F sin e) "
ds EI

after application of the boundary condition that 1/R = d6/ds = 0
when 6 = 7. This equation may now be integrated to find the
various shape parameters which describe the size of the bend:
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where L is the half-length of the bend section of fiber and where
$(x) is the integral defined by
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in which I'(x) is the gamma or factorial function defined by

I'x) = J; £7e dE 9

which is readily calculated using polynomial approximations.® The
stress on the outer surface of the fiber (one fiber radius, r, from the
neutral axis) is

o = (r/R)E 10)
and hence

a(8) = r[(2EF/I) sin 6]"* (11)
The maximum tensile stress, oma, occurs at @ = 7/2 and is ‘

O max = 1(2EF/T)? (12)

The faceplate separation at fracture, D, is given by
D=2+d

where d is the overall fiber diameter (including any coating mate-
rial so that in general d # 2r). Hence from Eqgs. (7(b)) and (12),

at fracture
2r

max = 1.198E ~——

o D—d (13)
It should be noted that the maximum stress is ~20% higher than
is given by the simple first-order analysis which predicts that the
fiber is bent into a semicircle. The calculated value of the numer-
ical factor in Eq. (13) agrees quite well with the value of 1.24 %
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Fig. 3. Section through the bent fiber.

0.04 obtained by direct measurement of faceplate separations and
fiber bend radii.®

At this point in his analysis Gulati gave an order-of-magnitude
estimate of the effective length of fiber that would have to be
stressed in uniaxial tension in order to give the same strength as the
bend experiment for fibers with a particular distribution of
strengths. The next section presents a general analysis for the
equivalent tensile length for fibers of general strength distribution.

(2) Test Length Considerations

In this section an analysis is presented which corrects for the fact
that the length of fiber stressed in bending depends upon its
strength. The results can then be used to predict tensile strengths
from bend strength results or vice versa.

Weakest-link theory gives the result that the cumulative proba-
bility of failure by a representative stress, o', is given by

Fo')=1- exp[—Lf(o-) dA] (14)

where f(0) is interpreted as the probability per unit (small) area that
failure has occurred by a stress o. Since, in general, o is a function
of position, f(o) must be integrated over the entire specimen sur-
face. o' is a parameter which represents the magnitude of the stress
field and would be the applied stress in a tensile experiment or & s
for a bending experiment. The form of f(g) is not known a priori
and any suitable function may be arbitrarily chosen. The most
commonly used form for f(o) is the Weibull distribution because
of its wide applicability and ease of use.
a(r)\"dA

fio) s = (Z0)"%

0

To

(15)

The factor A, is not usually included in this expression but is used
here to retain dimensional consistency in Eq. (14). A, may be taken
as magnitude unity in the current system of units; o, is then a
measure of the strength of specimens with unit surface area. If the
factor Ao is omitted, o, would not have dimension [stress} but
[stress] [area] "™ —a parameter whose dimensionality is hard to
interpret!

The three-parameter Weibull distribution, which incorporates a
threshold stress below which failure will not occur, is not used here
since the added complexity is not justified. While an improved fit
to experimental data would be obtained, this is a result of increased
“flexibility” provided by a third variable parameter rather than an
improved physical description of the data. Also, the possibility of
very low strengths in very long length fibers should not be pre-
cluded since they are observed in practice.

For the bent fiber a(r) = o(8, ¢) where 0 represents position
along the fiber (Fig. 2) and ¢ represents position around the fiber
circumference (Fig. 3). Therefore from Egs. (11), (12), and (15)
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Fig. 4. (a) Stress profiles as the fiber is progressively loaded. (b) Final
stress profile and maximum stress envelope.

we have
Omax\" . w2 om 1
flo)dA = sin™* 0 sin” ¢ ds r dp— (16)
Jo AO
but from Egs. (6) and (12)
EI 2 Er
ds = do(ZF sin 0) " Gmae sin'2 8 (17
and hence
:;I E 2 (7 L
f floyda = L= 20 | gine-12 g 49 f sin” ¢ do
A To Ao [} 0o
4Er? (m - 1)
= $l— m-1
o 3 $(m)o (18)

The equivalent expression for a tensile test is

2ml 1
J;f(o-)dA = A—:’a—gom 19)

Comparing Eqs. (18) and (19) we see that the distribution of
strengths in bending is still Weibull in form but with a modified
Weibull exponent.

(3) Correction for Prestressed Sections of Fiber

The preceding analysis provides only an approximate evaluation
of the failure probability of the bent fiber. Consider Fig. 4(a),
which shows the distribution of stress along the fiber at successive
positions as the faceplates are brought together. If the fiber breaks
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when the bent section is BB, then the stress profile along the fiber
is BAPA'B’. Consider now Fig. 4(b), which shows this stress
profile BAPA'B' and also the envelopes, AE and A’E’, of all stress
profiles encountered during the previous loading. We see that the
sections of fiber BC and C'B’ have been under a higher stress at
some stage in the past and that sections BD and D 'B’ and beyond,
while now under zero stress, have been stressed in the past, and
have survived this prestressing. Clearly, when evaluating the risk
function of Eq. (15), the appropriate stress profile to use is
EAPA'E’ rather than BAPA'B’. The first step in this analysis is to
locate the points C and C’. From Fig. 4(a) it is seen that the stress
in the fiber section CC’ increases when the faceplates are brought
together by a small amount, while the stress in sections BC and
C'B’ decreases. C and C' are defined as the positions at which the
stress does not change as the faceplates are moved; that is

a
Ea(s,b) ) =0 (20)

When the expression for o(8) of Eq. (11) is substituted into
Eqgs. (7(b)) and (20), we find

sin §  cos 8d6

b 2 db @b
Equations (6) and (7(b)) on integration give
s 1 f’ dy
b $(¥) Jop sin? ¢ @2)

which when differentiated with respect to b, holding s constant,
gives
deé

== —9(;/2)% sin'? @ 3)

Combining Egs. (21), (22), and (23), we obtain

f" dy _ 2sin'? 9
a2 sin'? ¢ cos 0

24

The particular value of 6, 6, say, which satisfies this equation
defines the positions of C and C’. 8o, found numerically, is
157.101°.

The risk of failure for the section of fiber between C and C' is
obtained by modifying the @ integration of Eq. (18) to be between
the limits (-8, 0o) giving

L 8(m - D/2,00(m @9
000

LC, flo)dA =

Table I. Comparison of the Slopes and Intercepts of the
Straight Lines Obtained for Bending and Tension on a
Weibull Probability Plot

Slope Intercept
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where
v

$x, ¥) = f sin” £ d§ (26)

- $(x) = $(x, m)

Now we may find the stress distribution corresponding to the
envelopes EA and A’E’ of Fig. 4(b). From Eq. (20) we deduce that
the maximum stress that any part of the fiber in the region DC and
C’'D’ has seen occurs when it was at a position corresponding to
8o at some larger faceplate separation. Since this position is de-
fined by Eq. (22) to be

s/b = $(—V2, 80)/$(%2) V1))
we have from Egs. (11) and (7(b))

o(s) = M sin'? 6, (28)

and hence the complete distribution around the fiber circumference
is

ols, @) =

Er§(-v,, . .
L(S—Z-O—O) sin'? @, sin ¢ 29)

and the contribution to the failure probability is

_ (Er§(=5, 80) sin'? §o\"
J’EC.C’E' f(o.) a = ( To )

xf sin’”¢d¢izf &
0 Ao ,os"'

_ 4<Er$(-—Vz, 0,) sin'? 00)"‘
Oo

r 1

Ao (m — 153

where s is the position of C. From Eq. (28) it may be deduced that
O max, the stress at 8 = /2 at fracture, is given by

T max = Er}(_vzy 00)/5()
which may be used to eliminate s, from Eq. (30) giving

4Er® $(—15, 8o) sin™? 6,9(m) |
T max
Ao0o m-—1
(31)

This equation has the same dependence on ¢ ... as the contribution
from the central section of the fiber (Eq. (25)) so that the strength
distribution is still Weibull in form.

Table I summarizes the slopes and intercepts for bending and
tension for the Weibull plot of In In [1/(1 — F)] vs In (stress).
The function M(m) in the intercept may be calculated exactly or
good approximations can be made. Table II compares the exact
expression with two approximate ones. The exact expression in-
volves evaluation of $(x, ) which must be done numerically.
Approximation 1, the analysis presented in the previous section,

X $(m) (30)

[ -

Bending m =1 }“ [‘Z‘E’ ;\A//t*(ml&‘ (m)/Ao0%] avoids this computation. The expression underestimates J(m) by
Tension m n 2a7l/Aw03) an amount corresponding to the regions bounded by EABD and
Table II. Comparison of the Exact Form for /{(m) with Two Approximate Forms
Stress profile
M(m) (Fig. 4(b)) Comments
Exact $(m — 1)/2,80) + [$(—2, 80) sin™ Bo]/(m — 1) EAPA'E’ Inconvenient to calculate
$(m — 1)/2,80)
Approx. 1 $((m — 1)/2) BAPA'B’ Underestimate; better than
’ approximation 2 for m = 3
Approx. 2 F((m — 1)/2) + [$(—V4, 8o) sin™? Gol/(m — 1) EA + A'E' Overestimate; better than
+ BAPA'B’ approximation 1 form < 3
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Fig. 5. Absolute relative error as a function of the Weibull exponent, m,
for the two approximate expressions for the function M(m) given in
Table II.

E’'A'B'D' in Fig. 4(b). Approximation 2 only involves calculating
$(—14, 00) (=1.35430) and overestimates (m) by an amount
corresponding to regions BAC and B'A'C’.

Figure 5 shows the absolute value of the relative errors involved
in these two approximations. For m = 3, approximation 1 is better
than approximation 2 and the error is negligible for m = 5. There-
fore, for most circumstances in which m takes moderate or large
values, approximation 1, which is significantly easier to calculate
than the exact expression, provides adequate accuracy. However,
all results presented here incorporate exact calculations of the
function M(m).

(4) Mean Strengths in Bending and Tension
The mean strength associated with a distribution of the form

F(o) = 1 — exp[~(0/a")"]
is given by
o=0T1+ 1/m)

and hence the mean strength for bending, o, is given by

AO oo U(m—1)
=|\l—— It +1 -
e (4Er21M(m)§(m)) ool 1 +1/(m = 1]
(32)
while the mean strength for tension, o, is
AO im
o= ( ) ool'(1 + 1/m) (33)
27l
The ratio of these two quantities may be expressed as
s _ {1,11 1 1+ 1/(m - 1)]}”""l
o, E r 2 M(m)$(m) 1 + 1/m)
(34)

and hence is a function of the strain at failure in tension (o, /E),
the tensile specimen aspect ratio (//r) and the Weibull exponent, m.

Figure 6 compares the ratio of strengths in bending and tension
for a 125-um-diameter fiber, with a 1-m length in tension, as a
function of the Weibull exponent, m, for various failure strains.
The ratio of the strengths is near unity for large m but for small m
the strength in bending diverges. This effect is just due to the
differing test lengths — the mean strengths of two fibers of length
1, and 1, are in ratio (I,/1,)""™ and for large m this factor is close to
unity; however, for small m the factor can be significant, as it is
when comparing bending with tension.

Using rough approximations, Gulati‘ estimated bending to ten-
sile strength ratios of 1.25 form = 46 and 1.04 form = 200. The
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above analysis gives values of 1.25 and 1.06 assuming a tensile
strength of 5% strain in a 1-m length, which are in good agreement.

(5) Equivalent Tensile Test Length

We will now consider the equivalent length of fiber that would
have to be tested in tension to give the same mean strength as
measured in the bend test. Equating the mean strengths in bending
and tension we find that the equivalent tensile length is given by

_[rE2 I™(1 + 1/m) ™Y
b= {zs’" o 7 M3 0m) o T om — 1)]}

(33)

where o, is the tensile strength of the fiber at some constant length
lo. Figure 7 shows the variation of /, with m for four different fiber
strengths (o, /E) assuming a tensile test length of [, = 1 m. The
equivalent length has a maximum value, but is small for both small
and large m. At large m, the probability of failure, which is propor-
tional to the m-th power of stress, falls very rapidly with distance
from the position of maximum stress at the tip of the bend. There-
fore, only a very small part of the surface has a significant proba-
bility of fracture and the equivalent length is small. At small m,
the bending strength is very high (sec Fig. 6) and so the amount
of fiber in the bend is very small, leading again to a small equiva-
lent length.
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Fig. 8. Weibull probability plot of bending and tensile data for an
intermediate-m-valued fiber. The dashed line is the bending behavior that
would be predicted from the tensile results.

To summarize Fig. 7, for all reasonable values of m and fiber
strength, the equivalent tensile length is between 10 and 1000 pm.
This is typically 3 orders of magnitude smaller than the length of
specimen usually used in tension. It is also much smaller than the
length of bent fiber, and significant errors would be introduced if
it were assumed that the fiber were bent into a semicircle.

III. Experimental Results

The bending and tensile methods described in Section I have
been used to measure the strengths of three silica fibers with
representatively large, intermediate, and small values for their
Weibull exponents and the preceding analysis has been used to
correlate the results of the two techniques. In all cases the fiber
diameter (excluding the polymeric coating) was 125 um, the ten-
sile test length was 25 mm, and the coating material was stripped
before breaking the fibers in bending.

(1) Intermediate-Weibull-Exponent Fiber

Figure 8, a Weibull probability plot, compares the bending
(open circles) and tensile (closed circles) data for the intermediate-
Weibull-exponent fiber — the measured values of m for the two
sets of data are marked and were calculated using an unbiased
maximum likelihood estimator technique’ which also provides the
confidence limits which here represent a 90% confidence interval.
The Weibull parameters are more usually determined by finding
the best-fit straight line to the data on the Weibull probability plot.
This type of linear regression makes invalid assumptions about the
data and, while the expectation values of the Weibull parameters
do not differ significantly from the maximum likelihood estimates,
the confidence intervals are systematically grossly underestimated.
For example, linear regression gives a value of m = 12.3 + 0.7
for the tensile data of Fig. 8, while the unbiased maximum like-
lihood estimator is 14 + 4 for the same 90% confidence interval.

The estimated values of m for tension and bending are in good
agreement and, as expected, the bend strength is significantly
higher than the tensile strength. However, the dashed line shows
the behavior in bending that is predicted from the tensile data but
the agreement with the experimental bending data is poor. The
median failure strain for this fiber is ~6% and from Fig. 7 the
equivalent tensile length is =50 pm compared with the tensile test
length of 25 cm. Clearly with such a large difference in tested
length, and with such a broad distribution of strength, the two
experiments explore quite different regions of the flaw size dis-
tribution. The Weibull distribution corresponds to a unique flaw
size distribution;® since the Weibull distribution is arbitrary, so is
the flaw size distribution and so it cannot be expected that ex-
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predicted from the tensile results.

trapolation from one part of the distribution to another will give
reliable results.

(2) Low-Weibull-Exponent Fiber

Figure 9 compares bending and tensile results of the low-
m-value fiber. The tensile data give a value of m = 4, while the
bending data give a bimodal strength distribution. The low-
strength mode probably corresponds to the strengths observed in
tension, but the high-strength mode is not observed at all in ten-
sion. Again, the bending behavior predicted from the tensile data
(dashed line) does not correspond to the observed behavior.

The criterion for bimodality used here is that the Weibull ex-
ponents for the two modes should be significantly different from
both each other and the single Weibull exponent obtained assuming
a unimodal distribution. The tensile data do satisfy this criterion,
while the bending data do not.

It should be noted that the predicted bending strength distribu-
tions in Figs. 8 and 9 both give median strengths in excess of
6 GPa which is unphysical since the maximum observed strength
of this type of fiber is of this order. The Weibull distribution
predicts that the mean strength of a specimen increases as its size
decreases and for an arbitrarily small specimen the strength may be
arbitrarily large. In reality the strength of a specimen cannot exceed
the theoretical strength of the material. This behavior is incorpo-
rated neither in the Weibull distribution nor in other commonly
used distributions.

(3) High-Weibull-Exponent Fiber

At high values of m one expects the agreement between pre-
dicted and observed behavior to be better because test length
changes are less important. Figure 10 shows typical results for an
as-drawn high-strength fiber. In this case, while there is good
agreement between the measured values of m, the bending strength
is lower than the tensile strength while it is predicted to be higher
(dashed line). This behavior could be explained by the nonlinearity
of the Young’s modulus of silica. At this strain level (=8%) the
modulus of silica is ~94 GPa compared with =72 GPa at zero
strain.” If this higher value of modulus is used, the bending data
have a median strength approaching 8 GPa, which is higher than
the predicted strength. The effective modulus will lie between 72
and 94 GPa because the strain in the bent fiber varies between 0
and 8%. A more detailed calculation involving a stress-dependent
modulus is not justified since at 8% strain the linear elastic analysis
for the bend geometry becomes unreliable. However, while the
agreement between the observed and predicted median strengths in
bending is not good, the values are not inconsistent.

Kurkjian and Paek™ found that for as-drawn high-strength fibers
the apparent variability in strength approximately equals the vari-
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Fig. 10. Weibull probability plot of bending and tensile data for a high-
m-valued fiber. The dashed line is the bending behavior that would be
predicted from the tensile results.

ability in cross-sectional area of the fiber caused by diameter fluc-
tuations. They concluded that the real variability in strength does
not contribute significantly to the measured variability. The fluctu-
ations in fiber diameter will depend on the details of the feedback
system used to control the diameter of the fiber in the drawing
process as well as the draw speed.

Measurements of fiber diameter for a typical fiber drawn at
1 ms™~! showed large-scale variation in diameter of ~2-m length
and a variable amplitude with a maximum peak-to-peak distance of
~1 um. Superimposed upon this were smaller fluctuations with
characteristic length of up to 10 cm and peak-to-peak amplitude
=~(.2 um. The periodic fluctuations are thought to be character-
istic of the feedback parameters of the diameter control mechanism
while the small-scale fluctuations are due to background noise and
are possibly dependent on the physical properties of silica glass.
Such complex behavior makes it impossible to make a priori pre-
dictions of length effects from diameter variation statistics since
these will vary from fiber to fiber. Thus, the close agreement
between the tensile and bending values of the Weibull exponent for
the high-m fiber is merely fortuitous. Note that the agreement is
not due to both methods sampling similar diameter distributions. If
it is assumed that fluctuations in perpendicular diameters correlate
(i.e., the fiber retains circularity through fluctuations), then appar-
ent strength variability for the tensile test depends on variability in
the square of the diameter, while for the bending method it depends
on the cube.

IV. Discussion and Conclusions

The bending technique for evaluating the strength of optical
fibers has been described and has proved to be very useful in
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situations where a tensile technique is unsuitable. An analysis
which may be used to compare tensile and bending data has been
presented and shows that the effective length of fiber that is
stressed in bending is very small compared to tensile test lengths
and also to the length of bent fiber. For this reason, except for
fibers with a very narrow distribution of strengths (large Weibull
exponent), the agreement between bending and tensile results is
poor since quite different sections of the flaw size distributions are
explored by the two methods. For large-Weibull-exponent fibers
the agreement is still not good because variability in apparent
strength is due to variability in the fiber diameter. Much better
agreement between predictions and experiment would be realized
for a low-strength (strain to failure <1%) high-Weibull-modulus
fiber, but such a material is not available.

1t should be noted that the analysis for the effect of tested length
presented here relies on the assumption that the fiber strengths
follow the Weibull distribution. Other distribution functions may
be used and would give different predictions which may or may not
agree better with the observed behavior. However, while a particu-
lar distribution function may in hindsight appear better than others,
there is no reason to suppose that it will be better for other experi-
ments. There are no sound physical models available at present for
predicting strength distributions so any distribution function may
be chosen arbitrarily (e.g., the Weibull distribution for its ease of
use) and used as a vehicle for describing the local strengths and
flaw sizes.

While the bending technique is very useful, it should not be used
as a direct substitute for tensile testing without careful consid-
eration of the equivalence of bending and tensile data. It can
however be employed as a fool that is used in parallel with tensile
testing to provide additional information about the flaw distribution
in the fiber.
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