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A Novel Four-Point Bend Test for Strength |
Measurement of Optical Fibers and Thin
Beams—Part II: Statistical Analysis

M. John Matthewson and Gregory J. Nelson

Abstract—In the first part of this work, a novel implementation
of the well-known four-point bend test is described that deter-
mines the strength of thin beams and optical fibers by measuring
the loading pin displacement, rather than the applied load. This
paper extends the analysis of the nonlinear bending behavior to
account for the stochastic nature of strength. A statistical analysis
is presented that determines the effective tested length in bending
and the tension to bending strength ratio. Results are given for
both surface and volume flaws as well as for specimens of both
circular and rectangular section. Strength measurements on a
deliberately weakened silica optical fiber are consistent with the
predictions of the analysis.

I. INTRODUCTION

N THE FIRST part of this work [1], a novel implementation

of the four-point bend test was described which uses the
displacement of the loading pins, rather than the applied
load, to characterize the specimen strength. The technique
- is particularly useful for determining the strength of thin,
compliant beams and has proved useful for testing relatively
weak (compared to pristine silica) optical fibers of various
compositions [2], [3], [4]. The principal advantages of the
technique are its ease of use, the ability to test several
specimens at once, the simplicity of immersing the specimens
in a variety of test environments, and the ability to test fibers
that are too weak to be tested in two-point bending. The large
deflection of the specimen means that the linear beam bending
theory that is normally applied to four-point bending is invalid
and a detailed nonlinear theory for the fiber stress as a function
of deflection was presented. The effect of specimen/pin friction
was accounted for and a simple technique was described for
making in situ measurements of the friction.

The strength of ceramics in general, and optical fibers in
particular, is a stochastic variable due to the presence of flaws
that are distributed in severity, orientation, and position. This
leads to a dependence of the strength on the specimen size
since larger specimens are more likely to contain larger flaws
and are therefore weaker than smaller specimens. For this
reason, strength results obtained using different techniques
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cannot be directly compared because the specimen sizes will
usually be different.”"We therefore present a statistical analysis
for the nonlinear four-point bend test so that its results can be
compared to those of tensile and two-point bending, as well
as to the linear analysis.

II." STATISTICAL ANALYSIS

The risk function f(o) is defined by f(o)dr being the
probability that an element of space, dr, fails by a stress o.
Weakest link theory shows that the cumulative probability of
failure by a representative stress o, F'(¢”), is given by

% :1_‘exp(— / f(a)ch) 1—ep(-R). ()

o’ represents the intensity of the stress field and would be the
uniaxial tension for a tensile test or the peak uniaxial stress
at the tip of the bend for a two-point bend test. R will be
called the “risk integral.” The integration is over the complete
space, 7, containing flaws; dr represents an element of surface
area of the fiber if surface flaws dominate (as is usually the
case for optical fiber) or an element of volume if volume
flaws dominate (as would be the case for porous glass fiber
or polycrystalline fiber). For convenience, the analysis will be
developed assuming surface flaws only and then equivalent
results for volume flaws will be shown. Similarly the results
will be determined for fibers with circular cross—sectiori, but
results will also be studied for rectangular sections.

In general, o is a function of position o(r), and hence, f(o)
must be: integrated over the entire surface of the specimen in
order to evaluate F'(¢’). Since the form of f(o) is not known
a priori, the well-known Weibull distribution is used for its
convenience and mathematical simplicity

m
F(o)dA = (ﬂ) A
Ao

go

@

m, the Weibull modulus, is an inverse measure of the width

of the distribution. The factor A, is a reference area of value
unity in the current system of units  which ensures' that the

dimensions of oq, which is a measure of the central tendency,

are those of stress [5]. Fig. 1 shows a section through the bent

fiber from which it may be shown that
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Fig. 1. Section through the bent fiber.

¢

Fig. 2. Schematic defining the geometry of the fiber between the support
and loading pins.

where E is Young’s modulus, o(6) is the stress profile along
the maximum tensile surface of the fiber (¢ = 90°), R(9) is

the radius of curvature profile and 4 is the angle the fiber makes -

with the horizontal (Fig. 2) and is a measure of position along
the fiber length. The element of surface area, dA, is given by

rd¢ dx

cosf

dA = rdpds = 1G]

where ds is an element of fiber length and dz is an element
of distance between the pins, as defined in Fig. 2. In the case
of four-point bending, the integral in (1) becomes

Ersing\™ rd¢dc
§R4—/fa)dA / /¢0( Roo ) Agcosb )

Em,',.m+1 4a
— Agol _/0 sin™ ¢dg / R™ cosH ©
2Emrm+1 4a
T Agal G(m)/o Rm c0s0 M
where
12 s - YELC)
G(m)/o sin™ ¢d¢p = 2 F( ) ®)

and I'(z) is the gamma function [6]. The function G{m) is
shown in Fig. 3. The integration over ¢ in (5) is only over the
tensile surface of the fiber. It is noted that the factor before
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Fig. 3. The dependence of the function G(m) on the Weibull modulus m.

the integration in (7) is a constant for a given fiber that is
independent of the geometry of the bend. It is further noted
that the integral in (7) is neither constant for a constant applied
load (as is the case for uniaxial tension) nor simply scales
with the size of the bend (as is the case for two-point bending,
[7]) due to the nonlinear nature of the deflection. This means
that the integration does not simplify to a simple power of
a parameter describing the magnitude of the deflection, such
as d. This, in turn, means that the strength distribution is no
longer Weibull. However, the deviation from Weibull is small
and is not likely to be detectable experimentally. The integral
cannot be calculated analytically and is therefore evaluated
numerically using the trapezoidal rule at the same time as
calculations are made of the curvature profile, 1/R(x), in the
numerical program described in part I of this work [1].

If the linear bending theory is assumed, the integration in
(7) can be performed analytically since, in this case,

1 3zd
-11%:1?% a<x<2a (10)
Q

and cosf = 1, giving the result
3Erd\ " dar (m + 2)
Ry = —— — =G
4 (4&200) A() (m+ ].) ( )
where the prime represents predictions of the linear bending
theory.
The equivalent analysis for a tensile specimen of length [,
subjected to a stress o, gives the risk integral, R

R, — ( o )m 27rl
() AO
while the equivalent analysis for two-point bending [7] gives

2 m
R, = 4FEr G(m )G( )(Umax) (13)

AOUmax

an

(12)

where omax is the maximum tensile stress at the tip of the
bend and is given by
2.396Er

Omax = D (14)
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Fig. 4. Risk profile along the fiber calculated for d/a = 1.26 (1 = 60°),
m = 10 and u = 0, Note the linear theory has been scaled by a factor of 0.01.

where D is the distance between the neutral axes of the two
parallel arms of the bent fiber.

A. Distribution of Failure Origins

The risk function, f(o), may be normalized to unity by
dividing by the risk integral R forming the distribution along
the fiber

P(z) = 1202 (15)

R

For linear test methods, such as uniaxial tension and linear
four-point bending, the length of specimen under test does not
change during loading.- Additionally, increased loading only
changes the magnitude of o(x), not its shape. Under these
two specific conditions, the magnitude of the applied stress
cancels in (15) so that P(z) is invariant during loading. It tHen
represents the distribution of fracture origins (assuming the
strength degrading defects are randomly distributed in position
and orientation). P(z) will not be invariant for nonlinear
bending for which both the length of specimen under stress and
the shape of the stress profile change during loading. However,
the “risk profile,” P(z), calculated for applied stresses typical
of those that cause failure will closely approximate the failure
origin positions.

Fig. 4 compares the risk profile for the linear and nonlinear
bending analyses for d/a = 1.26 (§; = 60°), m = 10 and
the pin/specimen friction coefficient 4 = 0. In this case the
profiles are not normalized and are a direct evaluation of f(o)
so that both the shape and magnitude of failure probability can
be compared. As expected, the nonlinear theory predicts that
failure is most likely to occur near the center of the specimen
while the linear theory gives a uniform probability across the
. center span. The magnitude of the risk for nonlinear bending
is substantially smaller than in linear bending (which is scaled
by 1072 in Fig. 4) reflecting’ the substantially lower stress
predicted by this theory.

Fig. 5 shows the normalized risk profile calculated for
d/a = 1.26 and m = 10 for various values of the pin/specimen
friction, p. As friction increases, the likelihood of failure at
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Fig. 5. Normalized risk profile along the fiber calculated for d/a = 1.26,

m = 10 and various values of the pin/fiber friction, p.

the pins rises compared to failure near the specimen center.
For y = 0.25 the profile is approximately uniform between
the loading pins so that the distribution of failure origins is
similar to that predicted by the linear theory. Failure at the pins
is undesirable because the stress field there has superimposed
upon it the contact stresses between the pin and fiber. The
contact stress field will decay over a few fiber diameters.
While failure probability becomes localized at the pins at high
friction, it will not necessarily be a problem for very thin fibers.
However, it is clearly desirable to have a more uniform risk
profile and so the friction should preferably be less than ~0.25.

B. Interpretation of Bending Strength

Comparison between the different test methods may be
made in two ways: first by calculating the equivalent tensile
test length and second by calculating the ratio of stréngths
measured in four-point bending and other techniques (e.g.,
tension and two-point bending). However, it is necessary to
discuss what is meant by “strength” in this context. In the
equivalent analysis for two-point bending [7] mean strengths
were compared since, if the tensile strength distribution is
assumed to be Weibull, then the two-point bend strength
distribution is also Weibull though with a modulus of m —
1 instead of m. This meant that the analytic expression
for the means of both distributions were readily available.
However, for nonlinear four-point bending the  distribution
is not Weibull if the tensile distribution is Weibull (i.e., the
flaw size distribution is an inverse power law [5]), so that
the distribution is not known analytically and the mean of the
distribution is not readily available. Therefore in the present
analysis, median strengths in tension and bending will be
considered. Setting F'(c') equal to 1/2 in (1) yields the
condition that # = In2 for the median strength. In fact the -
value of In? never explicitly appears in the results since the
risk integrals, ®;, aré equated directly-~to each other with
various constraints. Therefore, results are not only valid for
median strength but also for-any strength percentile. This is
not to say that the distributions are therefore identical. For
example, if the upper quartile strength were considered, this
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is a higher stress than the median giving larger values of d/a
at failure and hence different values for the integral in (7).

A second consideration concerns what value is taken for the
strength in a particular experiment. Often, the fracture origin
is located by examining the broken fragments and the stress
at failure is calculated at that position. If the stress distribu-
tion is non uniform, as is the case for two- and four-point
bending, failure will generally occur away from the point of
maximum stress. This means that some region of the specimen
survived a higher stress than the calculated failure stress. The
failure is therefore conditional on some material being stronger
elsewhere; this makes statistical interpretation of the results
difficult. This approach to characterizing the strength is useful
for characterizing the severity of the flaws that actually cause
failure, but it is difficult to extract information on the flaw size
distribution. In particular, the measured Weibull modulus of
the local stress values is not the same as the Weibull modulus
describing the flaw distribution. This approach is not useful
for high strength materials because the specimens frequently
shatter so that the failure origin cannot be identified. Since
one is generally interested in the flaw size distribution, the
approach used in this work is to characterize the strength
by the overall intensity of the stress field at failure. In two-
point bending [7] the intensity was characterized by the peak
stress, which in that case occurs at the tip of the bend. While
this method could be used here, in part I of this work [1]
it is was shown that the maximum stress can occur either
at the center (x = 2a) or at the loading pins (z = a,3a)
depending on the friction and d/a. While part I of this work
gives analytic approximations for determining this stress as a
function of the pin/specimen friction, it is convenient to avoid
the necessity of finding the position of maximum stress for any
given situation, For this reason, the intensity of the stress field
will be characterized in this work by the stress at the center of
the specimen, x = 2q, even though at high friction, the stress
at the pins can be significantly larger. This choice will have
significance when interpreting the results for large friction.

III. EQUIVALENT TENSILE TEST LENGTH

The equivalent tensile test length is defined as the length of
specimen that, when tested in uniaxial tension, gives the same
strength as the same material tested in bending. It is therefore
a measure of the amount of fiber subjected to significant stress.

When comparing the results of bending and tension, the
general approach is to equate the total risk integrals, &4 and
R, and to apply suitable constraints on the parameters. For
the equivalent tensile test length this means the tensile stress,
o, in (12) is equated to the central stress in four-point bending

_ br

7. (16)

g

where R, is the radius of curvature at the specimen center
x = 2a and solving for the tensile length, loq, gives

I :G(m)/4a R\"™ dz =aG(m)%
e © Jo \R cos 6 ™
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Fig. 6. Normalized equivalent tensile test length as a function of Weibull
modulus m calculated for the linear theory (d/a = 0), d/a = 0.32,0.70,
and 1.26 (81 = 20,40, and 60°), and ¢ = 0.

S = l/“ (&)m_d“”_.

a Jo R cosf

The integral in (17) scales with a so that it can be replaced
by a3 where the dimensionless integral, <, depends on d/a,
u, and m only. While (17) is explicitly independent of the
fiber radius, r, it does depend on d/a and the value of d/a at

which failure occurs is dependent on both the fiber strength
and radius. For the linear bending theory, (17) reduces to

, _Z_a m+ 2
log = - G(m)(—-)

where

18)

m+1 19
Fig. 6 shows the equivalent tensile test length, normalized
to a, as a function of Weibull modulus for three values of d/a
(i.e., three different fiber strengths) as well as the linear theory
(the limit of d/a = 0). There are two effects which explain
the difference between the linear and nonlinear theories. First,
the stress peaks at the center of the specimen according to
the nonlinear theory but is uniform across the center span for
the linear theory. Therefore, the length of fiber subjected to a
significant stress is smaller according to the nonlinear theory;
especially when the stress is raised to the mth power (e.g., see
Fig. 4). Therefore, at high values of m the equivalent tensile
test length is shorter than predicted by the linear theory. A
second effect is that, at large deflection, the length of fiber
between the inner pins is considerably larger than 2a [note the
factor cos™! 6 in (5)]. There is therefore physically more fiber
under test than considered by the linear theory and this effect
dominates at small m, giving a large effective test length.
For the case of zero friction, as shown in Fig. 6, the effective
tensile test length is actually little different from that predicted
by the linear theory for reasonable values of m (2 to ~20).
While pristine silica fiber can have m values in excess of 100
[8] it is too strong to be tested by this technique.
Using typical values for a relatively weak optical fiber,
r = 625 pm, ¢ = 10 mm, d/a = 1, m = 10, gives a
value of loq ~ 2 mm. These parameters give a/R ~ 0.5 and
the strain to failure ~0.3%. The equivalent tensile test length
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Fig. 7. Normalized equivalent tensile test length as a function of Weibull
modulus m calculated for d/a = 1.26 and various values of the pin/fiber
friction .

for a two-point bend experiment on the same fiber is of the
same order [7].

Fig. 7 shows the effective tensile test length as a function
of Weibull modulus for d/a = 1.26 and various values of
the pin/specimen friction coefficient, y. For large values of
friction the equivalent tensile test length rises rapidly with m.
This is principally due to the calculations characterizing the
stress field intensity by the stress at the specimen center rather
than at the loading pins where it is higher. Interestingly for
= 0.25, the results are close to those predicted by the linear
bending theory and this is because of the relatively uniform
risk profile between the loading pins (Fig. 5).

A. Cylindrical Specimen, Volume Flaws
For defects uniformly distributed throughout the material
volume, the element of volume is given by

dV = pdpdpds 20)

where p is the radial distance of the element from the center
of the fiber. The volume flaw equivalent of (5) becomes

4a 7T r . m
Epsin dpdodz
3%4,v:/ / / < £ ¢> papdo @1)
z=0 J¢=0 J p=0 a0 Vocos@
and the equivalent of (12) becomes
o\ wr3l
Rev =1{— 22
" (UO) Vo 22)

where the subscript “V” refers to volume flaws. It may readily
be shown that the equivalent tensile test length for volume
flaws in a fiber is simply related to the value for surface flaws
by

2

e (23)

leq,V =

The results of Figs. 6 and 7 may then be used for volume
flaws by applying the simple scaling factor implied by (23).
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B. Rectangular Beams

For the case of a rectangular beam with surface defects, of
thickness ¢ and width w, it will be assumed that ¢ < w so that
the probability of failure from the beam edges is negligible.
In this case the equivalent tensile test length can be shown to

be
l -1 4a RN\™ dz 7 ;
R A R ) cosf  2G(m) "
where the subscript “R” refers to the rectangular section.
Again, Figs. 6 and 7 can be used to determine the equivalent
tensile test length for this geometry by scaling by «/2G(m).
For a rectangular beam with volume flaws the above anal-

ysis can be readily Rexténdec\l to give the equivalent tensile test
length in this case as '

24)

t

mleq,}{. N (25)

Zeq,R,V =

To summarize, the equivalent tensile test length for different

types of specimen geometry and flaw distribution can be con-

veniently calculated from the results for cylindrical specimens

with surface flaws by applying simple scaling factors that
depend only on the flaw distribution Weibull modulus, m.

IV. STRENGTH RATIO, FOUR-POINT
BENDING TO TENSION

The ratio of median strength in tensile and four-point
bending is calculated, as for the effective tensile test length,
by equating the total risk integrals, (7) and (12). In this case,
however, the strength ratio is calculated assuming a fixed
tensile test length, [;. Equations (7), (12), and (17) then give

the ratio as
oy lt 1/m
Tt leq '

Fig. 8 shows the strength ratio as a function of Weibull
modulus, m, for values of d/a = 0 (the linear theory) and
dfa = 0.32,0.7, and1.26 (§; = 20,40, and 60°), n = 0 and
for l;/a = 1. There is little dependence on the ratio of d/a,
since the dependence shown in Fig. 6 is raised to the mth root
(26). The strength ratio is close to unity for these parameters,
principally because the tensile test length, /;, is chosen for
convenience to be the pin spacing, a; to calculate the results
of Fig. 8. In practice, I, will be one or two orders of magnitude
greater than a with ¢ ~ 10 mm and [; ~0.1 to 1 m. Under
these conditions, the strength ratio may be substantially greater
than unity and will show considerably more variation with the
Weibull modulus. The ratio of strength of tensile specimens of
length [; and a can be calculated from the well known result
of weakest link theory

ol=1) [a Ym
O'(Z = CL) - lt / ’
Thus Fig. 8 can be used to calculate the four-point bend to

tensile strength ratio for any tensile test length by modifying
results read from the graph by the factor in (27).

(26)

@7
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Fig. 9. Ratio of strengths in tension and four-point bending as a function of
the Weibull modulus m for d/a = 1.26, [;/a = 1 and various values of
the pin/fiber friction p.

Fig. 9 shows the ratio of strength as a function of the
Weibull modulus calculated for different values of the friction
p and for d/a = 1.26 and [;/a = 1. The results are sensitive
to the friction, particularly when recalculated for [, > a. At
high friction the strength in four-point bending can appear
much lower than in tension but this is an artifact of choosing
to characterize the four-point strength by the central stress at
z = 2a while the stress near the loading pins is substantially
higher for high p. If measurements are made at large p, it is
advisable to report bending results in terms of the equivalent
- tensile strength, calculated using Fig. 9, so that the numerical
value of the strength more closely matches the strength of the
failing flaws. It is again suggested that whenever possible the
friction should not exceed 0.25 in order to avoid difficulties
with interpretation of the results.

A. Other Specimen Geometries and Flaw Distributions

When considering volume flaws, and/or rectangular section
specimens, (26) is still valid provided that the appropriate
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Fig. 10. Ratio of strength in four- and two-point bending calculated for
dfa = 1.26, a/R = 200, and o4/FE = 0.005, and for various values
of the fiber/pin friction.

equivalent tensile test length is substituted for [.q. For exam-
ple, for rectangular specimens with volume flaws, the strength

ratio is
1/m
O4RV _ ( Iy )
O4RV leq, R,V

where leq r,v is given by (25). The other cases considered
above can be similarly determined using (23) and (24). The
behavior of all these cases can be deduced from Figs. 8 and
9 using the appropriate scaling factors.

(28)

V. STRENGTH RATIO, FOUR- TO
TwO-POINT BENDING

Normally, it is not possible to test the same specimen in
two- and four-point bending since it is either too strong to test
in four-point bending or too weak to insert into the two-point
bend apparatus. However, when studying fibers over a wide
range of strengths both techniques might be required and it is
useful to be able to compare them.

The strength ratio in two- and four-point bending can be
found by equating (7) and (13) and by setting the four-point
strength to the central stress o4 = Er/R. and the two-point
bend strength to the maximum stress, 02 = Omax, giving

o2 m—1_041 e FRA\™ dx -1 m—1
04 T 2Ev7r R cosf 2

- 34_9%(;*("’—‘—1). (29)

2E r 2

The ratio o4/0 is shown in Fig. 10 calculated for d/a = 1,
o4/E = 0.005 (0.5% strain to failure) and a/r = 200, and
for various values of the friction. Except for high friction
and very low Weibull modulus, the strength ratio is close to
unity. This is not surprising since the geometry of the fiber
in four-point bending at high d/a is not dissimilar to that in
two-point bending. Statistical considerations play a minor role
in comparing two- and four-point bending results.
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TABLE 1
COMPARISON OF THE RESULTS FOR STRENGTH MEASUREMENT
OF 15 SPECIMENS MADE IN BotH FOUR-POINT BENDING AND
TENSION FOR A DELIBERATELY WEAKENED SILICA FIBER

Test Technique Failure Standard Weibull 95% Conf.
Strain (%) Error Modulus, m Interval
Four-Point Bending 0.785 0.025 79 5.1-11.9
Tension 0.441 0.011 8.8 5.7-13.4

>

VI. EXPERIMENTAL RESULTS

In order to check the validity of the above statistical com-
parisons between four-point bend testing and tensile testing,
experiments were performed on damaged silica fiber. Damaged
silica was chosen rather than inherently weaker fiber so that
the ends could be left strong enough to withstand the necessary
gripping stresses in tension. 300 pum diameter silica fiber was
prepared by stripping in near 200 °C concentrated sulfuric
acid and rinsing in deionized water followed by acetone. For
the specimens to be tested in tension, a central portion of the
fiber measuring 15 cm was stripped leaving the ends coated.
Specimens for four-point bend testing were cut to 5 cm lengths
and completely stripped. The specimens were then abraded
by sliding them-through a thick slurry of fine alumina in a
consistent fashion (15 strokes). The damaged fiber was then
rinsed in deionized water to remove any alumina particles.
This produced a uniformly weak fiber within an acceptable
strength range for both techniques.

The fiber to be tested in tension was secured by winding
. the undamaged ends around capstan grips. Since only the
damaged portion of the fiber was effectively in test, the gage
length was assumed to be 15 cm. A crosshead speed of 11
mm/min was chosen to give a similar strain rate to that of
the four-point apparatus (¢ = 8 mm, 500 ,um-s_:L testing
rate) although this was only an approximation as the strain
rate is not constant in bending for constant pin speed. Strain
results for the tensile specimens were calculated utilizing the
measured load at failure and the known Young’s modulus for
silica (72.2 GPa). Strain results for four-point bend specimens
were calculated directly from the displacement d using the
correction factor previously described [1]. Both experiments
were conducted in ambient laboratory air (~25 °C, 50%
humidity); since both experiments used the same loading rate
and test environment, the effect of slow crack growth due to
environmental moisture is the same for both test methods and
so does not influence the comparison-of the results.

Table I summarizes the results of breaking 15 specimens for
each test method; the Weibull modulus, found by an unbiased
maximum likelihood estimator technique [9] is approximately
8 for both test methods. The strength in four- point bending
is 1.78 + 0.14 (95% confidence) times the tensile strength.
Fig. 11 shows the predicted strength ratio, o4 /0y, calculated
for the measured d/a of 0.6, p = 0.03 (the appropriate value
for bare silica on steel pins [1]), a.= 7.95 mm and [, = 150
mm. The experimental value for o4 /0 is also shown with 95%
confidence intervals on both the strength ratio and the Weibull
modulus. The prediction agrees well with the measured value.
While this simple experiment does not in itself verify the
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Fig. 11. Comparison of experimental and predicted values of the strength
ratio calculated for d/a = 0.66, p = 0.03, and I;/a = 18.9.

statistical analysis presented here for nonlinear bending, since
for these parameter values the nonlinear analysis differs little
from the linear analysis, the results do show that the modified
four-point bend technique does give results that are consistent
with tensile testing; both in terms of the mean strength and
the scatter in the measured strength.

VIL DISCUSSION AND CONCLUSION

A detailed statistical analysis of nonlinear four point bend-
ing has been developed. The results have been used to compare
the four-point bending technique with the two-point bending
and tensile techniques by means of the equivalent tensile test
length and the strength ratios. In general, even though the
nonlinear stress distribution might be quite different from the
linear analysis, the statistics of nonlinear bending are similar
to those for nonlinear bending except when the pin/specimen
friction is high (=0.25) or the Weibull modulus is small (a
broad strength distribution). When the friction is high, there
is an undesirable tendency for the specimens to fail at the
loading pins rather than in the center of the span. The results
of the four-point bending technique are most easily interpreted
when the friction is less than 0.25 but this work. provides the
information necessary to convert the bending strength to an
equivalent tensile strength for all reasonable parameter values,
including the case of high friction.

‘While the analysis has been developed for cucular section
specimens with a uniform distribution of surface flaws, results
are also given for rectangular specimens and for volume dis-
tributed flaws. The techniques used here are readily extensible
to other specimen geometries and flaw distributions.

Experimental results presented here and in the first part of
this work [1] show that strength measurements made in four-
point bending are consistent with both tensile and two-point
bending measurements, both in terms of the strength and the
scatter in the strength. Above all, this adaptation of four-point
bending has been shown to be a convenient and effective test
technique where the weak nature of the specimen prohibits the
use of more conventional methods.
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