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Thermal and Mechanical Analysis of Cross-Linked
Optical Fiber Coatings

S. M. Budy, T. Hawkins, P. Foy, M. J. Matthewson, D. W. Smith Jr., and J. Ballato

Abstract—A convenient route to enhancing the thermal degra-
dation on-set temperature of existing commercial optical fiber
coatings is presented. UV curable acrylate coatings were modified
through the addition of a multi-functional cross-linking agent and
are shown to increase their degradation temperature by 65°C
without any degradation in the mechanical or optical properties of
the resultant fiber. Such enhanced thermal robustness in coatings
is important for optical fiber applications in high energy laser
(HEL) systems and selected higher temperature sensing environ-
ments.

Index Terms—Mechanical testing, optical fiber, optical fiber
coatings.

1. INTRODUCTION

ILICA-BASED optical fibers, ubiquitous in telecommuni-
S cation systems, are finding greater utilization in more ex-
treme applications. Examples include down-hole monitoring of
oil wells and other geophysical and geothermal exploration as
well as defense and security related optical fiber lasers [1], [2].
Especially when employed in non-traditional environments, the
thermal and mechanical robustness of the optical fibers is of
major concern and the polymeric fiber coatings can be the lim-
iting factor in the utility of the fiber [3].

For decades, polymeric coatings have been applied to optical
fibers. The coatings provide mechanical protection to the pris-
tine surface of the as-drawn glass [4]. With a few limited excep-
tions, the fiber industry has largely relied on an acrylate-based
polymer system due to its relatively low cost and its ability
to be cured at high speed on-line using ultraviolet (UV) light.
Cross-linked polymers have been extensively studied and offer
beneficial properties such as good fracture strength, high mod-
ulus, increased solvent stability, better scratch resistance, re-
duced oxidation, and improved thermal degradation [5].

However, as fibers are finding use in more extreme environ-
ments, there is a growing need for coatings that exhibit greater
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thermal stability while not adversely affecting the overall me-
chanical or optical properties of the fiber. Rather than intro-
duce a new polymer into what is a well-established industry, this
work takes off-the-shelf UV curable acrylates accepted by the
industry and enhanced their thermal stability through a simple
additive. More specifically, reported here is a method to easily
modify a wide range of commercially available acrylate resins
through the addition of a multi-functional cross-linker.

II. EXPERIMENTAL PROCEDURE

A. Organic Polymer Coating

Desolite single coating (#3471-3-14), a well-established
optical fiber coating, was purchased from DSM Desotech,
Inc. (Elgin, IIl.). Dipentaerythritol penta-/hexa-acrylate was
purchased from Sigma-Aldrich, and was chosen due to a high
level of cross-linking functionality. Thereby small quantities
can be added with the greatest change in properties.

Preliminary tests involved blending different weight loadings
(wt%) of the penta-/hexa-functional acrylate cross-linker with
DSM resin at the selected amounts. Samples were mixed with a
mechanical shaker for 12-24 hr to ensure proper mixing. Films
were prepared by drop casting and spin casting the prepared
solutions and then curing under a UV lamp for 6-8 hr to ensure
complete polymerization.

Thermal stability was predicted using dynamic thermal gravi-
metric analysis (TGA) obtained using a TA Hi-Res TGA2950.
Thermal decomposition temperatures were obtained at a tem-
perature rate of 10 °C/min in air. The degradation temperature
(Ta) was defined as the temperature where the onset of weight
loss deviated from 100%.

The refractive index was acquired from spin cast films on
glass substrates obtained at 633 nm using a Metricon Prism Cou-
pler 2010.

Coating solutions were prepared in larger volumes for subse-
quent coating onto a silica optical fiber (~50 mL total volume).
Mixing was ensured by a mechanical shaker overnight, followed
by filtering with a 1 pm filter and centrifugation (10 000 rpm)
to remove all bubbles. Solutions were taken immediately to the
draw tower for use after centrifugation.

B. Fiber Fabrication and Coating

A 26 mm diameter F300 silica rod, manufactured by Heraeus
Tenevo (Buford, GA), was used in all draw experiments. The op-
tical fibers used in this study were drawn at Clemson University
using a commercial grade Heathway draw tower. The following
details were used on all fiber and coating draws: the draw tem-
perature was 2025 °C, a laser gauge measured 125+ 0.5 pm for
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Fig. 1. Onset of degradation temperatures measured by TGA in air (o) and
room temperature refractive index (o), at a wavelength of 633 nm, measured as
a function of multi-functional cross-linker concentration.

all fiber diameters, pressure driven coating system using pres-
sures from 0.8 to 1.0 bar with coating head die sizes; 375 pm
(entrance die) with either 275 pm, 325 pm, or 350 pm (exit
dies) was used to apply to the fiber while drawing, a UV lamp
operating at 150 to 175 Watts/inch, a second laser gauge mea-
sured the average thickness of the coating (ranged from 200.8
to 241.7 pm), and a spool to collect the fiber, from beginning to
end.

C. Mechanical Testing

The strength and fatigue behavior of the fibers with zero and
20 wt% of crosslinker in the coating have been characterized
with two-point bending [6] using standard test procedures [7]. In
addition, the strength distributions have been measured in uni-
axial tension with a gauge length of 0.5 m, also using standard
test methods [8]. Coating strip force measurements have been
made to characterize coating adhesion and strippability, using
a standard test method [9]. Since strength and fatigue (and, to
some extent, strip force) are sensitive to temperature and hu-
midity, all measurements were made in a controlled environ-
ment of 23 £+ 0.2° C, 50 £ 5% humidity.

III. EXPERIMENTAL RESULTS

A. Refractive Index (RI) Analysis

Spin cast films were prepared on glass substrates and fully
cured under a UV lamp for each loading level. The results are
shown in Fig. 1. No change in refractive index was found until
a loading greater than approximately 30 wt% cross-linker was
achieved.

B. Dynamic Thermogravimetric Analysis

Thermal gravimetric analysis (TGA) was used to estimate
the thermal stability of the acrylate coating containing zero
up to 60 wt% multi-functional cross-linker addition. Although
only dynamic thermal analysis was performed, a more thor-
ough study would entail isothermal experiments at numerous
temperatures [10]. However, it is necessary to know the highest
temperature at which a coating continues its efficacy. The
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Fig. 2. Dynamic thermal gravimetric analysis curves obtained for acrylate
coating with different amounts of multi-functional cross-linker (10 ° C/min).

thermal stability may be defined in many ways; the highest
temperature before degradation is essential in defining an
appropriate performance level for a explicit period of time.
As shown in Figs. 1 and 2, the onset of thermal degradation
increases with continued addition of the multi-functional
acrylate cross-linker. With the addition of only 1 wt% of the
multi-functional acrylate cross-linker, the thermal degradation
temperature raises from 230 °C to 285 °C in air; a 55 °C
increase. Thermal degradation occurs for all samples beyond
300 °C, thereby leading to catastrophic weight loss and possible
separate weight loss mechanisms as seen by the multi-modal
decrease. Further studies would be necessary to convolute the
exact degradation mechanism. Nevertheless, at lower tempera-
tures a smooth minimal weight loss can be observed indicating
complete cross-linking and curing.

C. Strength and Dynamic Fatigue

The subcritical crack growth (fatigue) behavior of fiber
coated with polymer containing zero and 20 wt% of cross-linker
has been measured using two-point flexure [11]. The results
in Fig. 3 show how the strength varies with loading rate (as
characterized by the faceplate velocity). The slope of the
log-log plot is used to determine the stress corrosion suscep-
tibility parameter, n, which is found to be 20.6 [20.0-21.2]
and 20.3 [19.6-21.0] for the zero and 20 wt% cross-linker
coatings respectively; the numbers in brackets represent a 95%
confidence interval for the estimates of n. While the fatigue
behavior of the two specimens is statistically indistinguishable,
the coating containing the cross-linker results in a somewhat
higher strength fiber.

Two-point bending was used for these measurements since it
has an effective test length of one to a few tens of microns [6].
As a result the occasional weak defect that is due to extrinsic
processing defects are not observed and the method is more sen-
sitive to the glass/coating interface itself, which is the topic of
importance here. However, tensile measurements have also been
made to ensure that the cross-linker does not cause an excessive

Authorized licensed use limited to: The University of Arizona. Downloaded on November 10, 2009 at 19:50 from IEEE Xplore. Restrictions apply.



5628

o[ . : : —
—~ 6F 7
<
& 20 wt%
=
on
=)
£ st -
75}

4 L 1 I_’ 1

10° 10! 102 10° 10*

Faceplate Velocity (um/s)

Fig. 3. Fiber strength measured in two-point bending as a function of faceplate
velocity for coating with and without 20 wt% of cross-linker.
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Fig. 4. Weibull plot of the strength distributions measured in uniaxial tension
and a gauge length of 0.5 m at a stress rate of 30 MPa/s for fiber with coatings
containing 0 and 20 wt% of cross-linker.

number of weak failures due to, for example, incorporation of
dust into the coating. Fig. 4 shows a Weibull probability plot for
0.5 m tensile specimens and it is observed that the cross-linker
has an insignificant effect on the strength distribution. Overall,
the cross-linker does not have any negative impact on the short
term strength and fatigue behavior.

D. Zero-Stress Aging

In general, UV-curable polymer coatings do have some ef-
fect on fatigue—typical values for n are around 20 to 25 but can
sometimes be as high as 30 for some coatings—but the effects
are not dramatic. In contrast, the zero-stress aging behavior can
be far more sensitive to the nature of the coating. During aging
in aggressive environments (high temperature and/or high hu-
midity or water activity) strength degradation can be observed
to occur beyond some incubation time; degradation is caused by
corrosion of the glass surface by moisture. The corrosion causes
surface roughness which acts as a source of stress concentra-
tors, thereby degrading the strength [11]. The time of onset
of the zero-stress aging “knee” is known to be very sensitive
to the nature of the coating. Ideally, any modification to the
coating should not adversely affect the zero-stress aging be-
havior. Fig. 5 shows how the strength varies with aging time
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Fig. 5. Strength measured in two-point bending (faceplate speed 5000 z2m/s)
and tension (stress rate 30 MPa/s) as a function of zero-stress aging time in
85 °C, 85% humidity environment.
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Fig. 6. Stress corrosion parameter measured by dynamic fatigue in two-point
bending as a function of zero-stress aging time in 85 °C, 85% humidity
environment.

under zero-stress in an 85 °C, 85% humidity environment (an
industry standard test condition for enhanced thermal aging) for
fibers coated with polymer coating with 0 and 20 wt% cross-
linker. Strength was measured in both two-point bending and
0.5 m gauge length tension. Although the results for bending
and tension are significantly different (due to how the different
effective test lengths interact with the somewhat sparse popu-
lation of flaws) the amount of cross-linker does not affect the
performance. The stress corrosion parameter, n, measured in
two-point bending (Fig. 6), while increasing with aging time,
is essentially independent of the amount of cross-linker. These
results show that the amount of cross-linker in the coating does
not adversely affect the zero-stress thermal aging behavior, at
least in regard to current industry standard requirements.

IV. CONCLUSION

The thermal degradation temperature of commercially avail-
able acrylate-based optical fiber coatings has been improved by
the addition of a single component drop-in modifier. The onset
for thermal decomposition temperature increased by 65 °C
through the addition of modest amounts of multi-functional
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acrylate cross-linker. A range of mechanical tests showed that
the overall strength, dynamic fatigue parameter, and zero-stress
aging performance were unaffected by the additive or slightly
improved. Additional acrylate resins are also of interest and are
being explored for lower refractive index coatings.
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