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ABSTRACT

THIS PAPER presents a theory for the indentation of a soft thin coating by a rigid body. The coating is
assumed to be bonded to a rigid substrate and to behave linearly elastically. A simplifying approximation
enables the stresses within the coating, averaged through its thickness, to be determined for particular
indenter profiles. The results are shown to be sensitive to the thickness and compressibility of the coating
material. Unlike much previous work, the results can be expressed analytically for certain indenter profiles
and have been substantiated by experiment. The theory has many useful applications, in particular for
situations where the layer acts as a protective coating and for the accurate, in situ and non-destructive
measurement of the elastic modulus of the coating material.
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NOTATION

indenter/coating contact radius

Hertzian contact radius

coating thickness

indenter penetration depth

fractional height (in terms of h) of pile-up around the indenter
function describing the indenter profile

spherical indenter radius

cone indenter semi-angle

tan 0

load on indenter

dimensionless load

radial and vertical displacements of the coating

functions giving radial dependence of u(r, z)

function giving radial dependence of v(r, z)

elastic constants of the coating material

normal stresses within the coating; r, 0,z are cylindrical polar
coordinates (see Fig. 1)

corresponding strains

radial shear stress, equal to 7,/t; on lower/upper surface of coating
corresponding (engineering) shear strain

The stresses and strains are taken as positive when tensile.

1

89



90 M. J. MATTHEWSON

1. INTRODUCTION

THE PROBLEM of contact with a thin soft layer rigidly bonded to a half-space is of great
practical interest. Objects are frequently covered by soft layers which can give
protection from damage by impact and abrasion or can modify the surface finish. The
subject has received much attention in the literature and various analytical
approaches have been made.

HanNaH (1951) formulated the problem of the plane-strain contact of a rigid
cylinder on an elastic layer in terms of an integral equation. The solution of this
equation is complex but has been found for various special cases [see, for example,
HANNAH (1951), ALEKSANDROV (1962) and ALEkSANDROV and VoOrovicH (1964)].
An analogous integral equation can be derived for axi-symmetric indenters and the
solution has been obtained for some special cases [ see, for example, SNEDDON (1951)].
However, these methods require sophisticated numerical techniques for determining
results which are frequently of an approximate nature and are rarely confirmed by
experiment. Further, some techniques are unreliable for coatings whose Poisson’s
ratio v % 0-4. However, McCorMick (1978) obtained results for elliptical contact on
layers and his results do cover the case of incompressible material, v = 0-5. Dr. J. A.
GRrReenwooD (Department of Engineering, University of Cambridge) (1979,
unpublished work), using a different technique, obtains very close agreement with his
work. The work described here will be compared with that of McCormick.

This paper describes an analysis for the contact of an indenter of arbitrary profile
with a coating which is rigidly bonded to a semi-infinite substrate. The elastic
modulus of the coating is assumed to be small compared with the moduli of the
indenter and substrate. The thickness of the coating is assumed to be small compared
with the contact radius which in turn is small compared with the characteristic linear
dimension of the indenter. Friction between the indenter and coating is ignored.

Using these assumptions, differential equations are found which describe the
deformation of the coating. The solution for indentation by a sphere (or paraboloid)
is found explicitly for general values of the Poisson’s ratio of the coating. A solution
for a general indenter profile is found for the case of incompressible material, v = 0-5;
and, as an example, indentation by a blunt cone (i.e. a cone with a large semi-angle) is
examined. Experiments using spherical and conical indenters show that the results of
the analysis are in good agreement with the observed behaviour. The results are also
found to agree well with McCormick’s work.

The present work was stimulated by experimental studies of the effect of coatings
in reducing impact damage, and some reference is made to this problem.

2. ANALYSIS

2.1 Formulation of the problem

Figure 1 shows the geometry of the situation. An indenter contacts a coating of
thickness h to a depth d with a radius of contact a. The coating piles up around the
indenter to a height dh. The movement of the coating material from its unloaded
position is described by the vertical and horizontal displacements v(r, z) and u(r, z)
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F1G. 1. Geometry of the contact of an indenter with a coated substrate.

z=0

(see Fig. 1). The approach adopted here is to seek approximations for these
displacements. Having specified forms for the displacements in this way, the four
strain components which are non-zero in axial symmetry (g,, &, &,, 7:,) may be found
(the customary notation is adopted here). However, because of the approximate
nature of the displacements, the displacements cannot be made to satisfy exactly the
boundary, elasticity and equilibrium conditions at all points in the layer. Because the
layer is thin, it is possible to satisfy these conditions to a good approximation with
quantities averaged through the coating thickness.

The displacements u(r, z) and u(r, z) are approximated by finite power series in z:

u(r, z) = A(r)+ B(r)z + C(r)z> ,}
v(r, z) = D(r)+ E(r)z.

Since u(r, 0) = v(r, 0) = 0, because the coating is rigidly attached to the substrate,
u(r, z) = B(r)z+ C(V)ZZ,}

v(r, z) = E(r)z,

where the functions B(r) and C(r) are to be found and E(r) is determined by the
indenter profile and penetration of the indenter into the coating. The above
approximations can be expected to be good for coatings which are thin compared to
the contact radius.

Figure 2 shows the averaged stresses acting on a small element of the coating.
Given that a/h > 1, the radial equilibrium equation becomes

(1)

da, . G, — 0y _To— Ty

dr v h ~ (2)

where ¢, and G, are the averaged radial and circumferential stresses and 7, and t, are
the shear stresses acting on the lower and upper surfaces of the coating. Because
friction between the indenter and coating is ignored,

7, =0 for all r. (3)

The radial strain is
ou
& = 75
or



92 M. J. MATTHEWSON

Op
T __~0+do
C_Ir‘/ 4:('0_
de
—"
Go
r dr
F1G. 2. Stresses acting on a small element of coating.
and using (1), d d
& = (’17 {B(i’)}2+ &? {C(i’)}z.
The average strain £, through the coating thickness is
1 h
g = 4 6[ g, dz,
and hence
oy 4 1,2 d
= 3h 3 B0V +307 0] @
Similarly,
7] B C
5= o1, B0 (V) + 12 €0 (r) 5)
r r
and
_ Ov  o(r,h)
e, = — = — = E(r).
fo=s = = ) (6)
The elasticity equations for averaged direct stresses and strains are
_ 2vG
o, = T2 (8 +&y+¢,)+2Gz,,
2vG
Gy = 1—2 (? + &g+ &,)+2GE,, (7)
B G . _
G, =—— (& +&+&,)+2GE,,
1—2v

where v and G are the Poisson’s ratio and shear modulus of the coating material. The
(engineering) strain is
ou Ov

Vrz:E‘FE

= B(r)+2C(r)z + a”g; 2, (8)
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giving

= G(y,,),=0 = GB(r),
and from (3), ‘o (o= (r)} ©)

T, = G(yrz)z=h = 0

(i) Analysis within the contact region (r < a). The averaged strain component g, is
determined by the shape of the indenter, viz.,

5 = E(r) = f-;l 4o (10)

where f(r) describes the indenter profile. Hence, from (6), (8) and (9),
d
T :O:G{B(r)+2hC(r)+air} (11)

Substitution of the strains given by (4), (5) and (10) into the elasticity equations (7)
gives the normal stresses in terms of the functions B(r) and C(r). Substitution of the
stresses into the equilibrium equation (2), after elimination of the shear stresses 7, and
7, acting on the coating given by (9), yields

2(1—v) 2v. 1df B(r)
D{LhB(r)+ Y2 C(r)) g _ B0
1oy ZEhBO)HSCH)+ o T

0<r<a,

where % is the differential operator defined by

‘ d’9 1dg ¢
R Rt =

C(r) is eliminated by use of (11), thus yielding a differential equation for B(r):

ldf} 3 (1-2v) v o df

7B e i PO e =

<
>4 0<r<a, (12)

which, in principle, may be solved for any indenter profile f(r). It is then possible to
calculate the stresses and strains from the solution.

(ii) Analysis outside the contact region (r > a). Equations (8) and (9), give
d
B(r)+2hC(r)+ E”rl— =0, (13)
where v, = v(r, h). Now, g, = 0 for r > a and therefore from (7),
~ v R

but v; = he, and therefore

do, _ vho[dF, dg s
dr  1—v]dr  dr (" (15)
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Elimination of (dv,/dr) from (13) and (15) together with substitution for the strains
using (4) and (5) gives
1—
D{YhB(r)+5h2C(r)}) = ——vhv (B(r)+2hC(r)}, r>a. (16)
Substitution of (14) into (7) followed by substitution into the equilibrium condition
(2) with use of (9) gives
1—
2{3hB(r)+3h*C(r)} = = " Br), r>a. (17)
Elimination of the left-hand sides of (16) and (17) yields the relation between B(r) and
C(r), viz., -
. _“'p 18
Clr) ==~ B0, (18)
which when substituted into (16) or (17) gives

6(1—) B(r) _

The general solution of this equation is

6(1—v) 1 6(1—v) r
B(r):othl{ Zlfmh}+a211{ —74"_‘_—‘)—% , F>a,

where o, and «, are disposable constants and I,(x) and K,(x) are the first-order
modified Bessel functions [see, for example, ABRAMOwITZ and STEGUN (1965)].
Equation (9) shows that GB(r) can be identified with the shear stress acting across
the coating/substrate interface. Hence, B(r) must approach zero for large values of r.
I,(x) is bounded for finite x > 0 but unbounded for x — oo and hence «, = 0. This

gives —
L 6(1—v) r
B(r)—oclKl{ / ity h}’ r>a. (19)

The full solution of the problem will now be found for indentation by a large
sphere (Section 2.2) and, when v = 1, for a blunt cone (Section 2.3) and an indenter of
arbitrary profile (Section 2.4).

2.2 Solution for indentation by a sphere

If the radius of the sphere R is much larger than the contact radius a, then the
profile of the indenter can be approximated by

r—a

flr)= SR (20)
Substitution of (20) into (12) gives
( —2v) B(r) N 3vr
2(1—v) h* T (1—vh*R
The general solution for B(r) is

r 312 r 3(1-2v
B(r) = R‘f‘ﬁl{ 2(1 ) }+B2Kl{ Y R

D{B(r)} —
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where B, and B, are disposable constants. This expression contains two singularities,
one at r = 0 (K,(x) is bounded for all x > 0 but unbounded at x = 0) and another for
v = 4, which must be removed since B(r) must be finite. The singularity at the origin
r = 0 is simply removed by putting 8, = 0. The first term is singular for v = 4 and to
balance this, f; may be chosen so that the second term has a similar singularity and
so that the sum of the two remains finite. Evaluation of B(r) with, or near to, v=1%
may then be made by expressing I,(x) in terms of its analytical power series and
combining the diverging linear terms in r to yield an expression which is finite for
0<r<aand —1<v <1} and which also satisfies the symmetry condition that the

interfacial shear stress is zero at r = 0 (B(0) = 0), viz.,
3(1—2v)a,R—6v In41
B(r) = Ay "7, 0L r<a, 21
(r)=ayr+ 16(1—v)i’R n§1 2n+1 (21),
where
3(1—-2v)

=== 2 .
= S yyme— 12 -2 (M= 5)

a; = 1, and qa, is a constant to be found.

The disposable constants a4, a;, § may now be found by suitable matching at the
boundary r = a. At r = a, there are continuity conditions only on the average
displacements i, 0 (avoiding fracture) and on the stresses &,,T,, (maintaining
equilibrium) but not &y, 6,. This gives four conditions but as the theory supplies only
three disposable constants they cannot all be satisfied and the problem is
overdetermined. The “optimum” solution would be to determine the constants by an
energy method, which is straightforward. However, here, an empirical procedure of
imposing continuity on the three normal strains (or, equivalently, stresses) is adopted,
this being justified post hoc in terms of the agreement between the theoretical results
thereby predicted and both the experimental results and predictions of the work of
McCormick (1978) (Section 3). The reason for the apparent success of this method is
not entirely clear and is a subject for further work. The inconsistency involved in the
theory leads to some error in the results which manifests itself in a few per cent
mismatch in 7, at r = a.

The analytical expression for a, is non-trivial but the expressions for &, in (19),
B, in (21) and ¢ are readily found:
_ (K'a—K)(1—6v)
b= (KI'—IK')(1 —2v)2R’

-4 1—6v
MK {2(1— Thd }

v 44y h
5 —_ ’
1=v 13 gnKa+K),
where
I=1, 3(1— 2v)a I’ZQ,
2(1—v) h da

[6(1—v) a dK
K:K ':A,
{ 4+v h} K da
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Examination of these results shows that all stresses and strains are inversely
proportional to the indenter radius R. Therefore, the stresses and strains will be
scaled by the dimensionless factor R/a in the figures. When presented in this way,
these quantities are only functionally dependent on a/h and v.

(i) Alternative solution for v =%. In practical circumstances, it is found that
elastomeric coatings are very much more successful than other materials for protecting
components from impact damage. For this reason, the experiments described in this
paper have been confined to nearly incompressible materials. Numerical evaluation of
the stress distribution in this case poses an apparent problem as (7) contains terms
which become a ratio of infinitesimals as v — 4. The stress distribution can be
obtained using the above theory when v is very close to 4, but a simplified solution
may be found when v = } precisely and this is described here.
When v = 4, the solution for the function B(r) reduces to

( r 3a® M2 |/
— — 11— - _ < s
i (o) Jo) o= <o

B(r) = (22)

2
a1K1<\/%;>, r>a.J

The strains are given by
L _hBy =37 k)

"3z 8Rh  6R

_ hBy a*—r*> h
o = o+ - ——, ¢ 0<r<a,
%=73, " 8RN 6R’ r<a

P2 g2
_: N
“=rn T )

3 d 2r
o3, d 2r
R’ aldr{Kl( 3h)}’

_ 3 1 2r r>a,
go—g”“l;&(ﬁz)’

g, =— (€r+‘§6)9

(23)

which, when matched at r = a, give

2(13 3N
oy = 2 7 N
3h*R(K—K'a)
90, K a
= = >
& g TR

_@ b 2
T 4Rh 3R 3a
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Equations (7) reduce to
6, = 6o+ 2Gé,, ’|

6-9 - 6'0 + 2G§9, (24)
g, 6'0+2G8_Z,

when v = 4, where — &, is the averaged hydrostatic pressure. Now, 5, =0 and &, = o
at r = a, and from (24),

0o =—2Gd atr=a. (25)

A differential equation for &, is obtained by substituting (23) and (24) into the
equilibrium equation (2). When this is solved, with use of (25) as a boundary
condition, &, is obtained as

Oo_qa_n| P 1 3 o ol_
G- ¢ ")[2ah*'hR SR )| T2

and hence the normal stresses may be obtained. The total compression load P can
now be found by integrating &, over the contact area, viz.,

4

2
= na*G Lﬁ3 a ,fL,_ 26
P““<%+M+mm (26)

This special solution (v = 1) is indistinguishable from the general solution (0 < v < )
when v = (0-49999, and therefore it provides both a check for the analysis and a
simpler representation of the solution for incompressible coating materials.

(ii) Results. The stress distributions have been found to be very sensitive to the
compressibility of the coating. Figure 3(a) shows the distribution of the interfacial
shear stress 17, with radius r for various values of v. The results are calculated for
a/h = 5. The magnitude of 7, rises rapidly as the coating becomes less compressible
(v— %). This may be interpreted physically in the following terms. The coating
material volume must be removed from beneath the indenter. This is achieved in two
ways; firstly, by compression of the coating; and secondly, by radial movement of
material away from the contact zone. For virtually incompressible coatings, the first
mechanism is negligible and thus the radial movement is greater in this case. The
shear stress on the interface is a result of this radial displacement. The sensitivity of z,
to Poisson’s ratio is of practical significance as protective coatings are frequently
highly incompressible elastomers and are shown here to be more vulnerable to
debonding than other materials with similar elastic moduli. Debonding of protective
coatings is undesirable.

Figure 3(b) shows the radial distribution of 1, for various coating thicknesses
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F1G. 3. Indentation by a sphere. The variation of the coating/substrate interfacial shear stress 7, with radius
for various values of (a) Poisson’s ratio of coating v and (b) coating thickness h/a. The results are calculated
for (a) a/h =5 and (b) v = 0-5.

calculated for v = 1. The magnitude of t, rises rapidly as the thickness decreases.
Figure 4 shows the radial distributions of the averaged direct stresses and strains
calculated for a/h = 5 and various values of v. All the stresses and strains are sensitive
to v. A large hydrostatic pressure is developed beneath the indenter and this results in
the three normal stresses being compressive everywhere, despite the fact that £, and &,
are tensile around r = 0.
Figure 5 shows the variation of a/ay with ay/h for v = 0-5 for both the present and
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F1G. 4. Indentation by a sphere. The variation of normal stresses and strains (averaged through the coating
thickness) with radius for various values of v: (a) &, (b) &, (¢) &,, (d) ,, (€) &, (f) G,. Results are calculated
for a/h = 5.
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McCormick’s (1978) theories. Here, ay is the Hertzian contact radius for contact on a
coating of infinite thickness, viz.,

<3PR(1 ——v)>”3
ay = | —— .

8G

In this form, the result is a “master-curve” for this particular value of v. In reality, the
ordinates of the curve should approach unity for small a/h but, due to the
approximations made in the present analysis, this is not so. The analysis will therefore
only be a good description of the contact for a/h < 2.

2.3 Solution for indentation by a cone
The profile function f(r) for a conical indenter is

r—a
= 27
o)==, (27)
where 0 is the cone semi-angle. The analysis will only be valid for blunt cones with
tan 0 > 1.
Substitution of (27) into (12) gives

3 1—2v 3v 1
DB} — s B .
B0 =2 1=y BO+ aq o Y o

=0, 0<r<a,
where ¢ = tan 0. A simple solution for B(r) may be found only for v = 1, viz.,
0<r<a,

Bs =0, given that B(r) is finite at r = 0. B(r) is discontinuous at the origin and this
results from the discontinuous nature of the indenter profile. However, the
discontinuity is small and the displacement #(0) = 0 so that there is no material
discontinuity even though t,(0) # 0. The stress distributions may be found in a
manner parallel to that used for the special case of a spherical indentation when v = 1.
The solution outside the contact region, r > a, is unchanged [equation (19)].

The strains within the contact region are given by

_  h 2r
& = 5 (,34‘ h_2?>’

_h r
89=§<B4—E>, 0<r<a,

r—a
&, = +9,
ht /

N
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FI1G. 5. Indentation by a sphere. Variation of a/ay with ay/h for v = 0-5 according to the present theory and
McCorMICK’s (1978) theory.

and on matching strains at r = a the constants are found as

Y 8a? )
' 9h (K —K'a)’
9a: K a
Ba= 8a +h—2t’ %

_a_2Bh
—ht 3 J

The total load is given by

3a  B,a® ad
P=na®G|—+2——— ).
ma <2ht+ ah Sk

2.4 Solution for general indenter profile

The solution of (12) for a general indenter profile is not simple for v # 4. However,
for v = % a simple solution for B(r) in terms of a power series in r can be found. It is
assumed, of course, that there is complete contact between the indenter and coating in
the region 0 < r < a.

If the indenter profile is expressed by a power series

flr)y= 3% b,
n=0
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then B(r) may be expressed as
o0
B(r)= Y ¢,
n=0

On substitution into (12) the coefficients of " may be equated and B(r) is given by

3
{%(”‘*‘ Dbys1— PEIPERT by - 1} ",

where f, is a disposable constant. The general solution of B(r) outside the contact
region is independent of the indenter profile and is therefore given by (19). Hence, the
stresses within the coating can be found for any indenter where the profile may be
expressed by an analytical power series in r.

B(r) = 1b + Ber+ i

n=2

3. EXPERIMENTAL
3.1 Indentation by spheres

Before proceeding to describe the experimental results it is useful to discuss the
range for which the present theory will be accurate.

(1) Region of validity. It has been assumed that the indenter and substrate are rigid. A
correction can be made if small displacements are involved. It is assumed that the &,-
distribution approximates the “‘semi-elliptical” distribution for the contact stress of
the Hertzian analysis for the contact of two curved surfaces. We now denote the
Poisson’s ratios and shear moduli of the indenter and substrate by v;, v, G;, G.
Hertzian theory predicts that the change in curvature of the indenter for the
indenter/coating contact is given by

and similarly for the indenter/substrate contact,

. — 3P 1—v,
S 4d® 2G,°

so that the coating is confined between an effective curvature (1/R’) given by

1
Ezﬁ‘FKS—-Ki,

i.e.
R _ . _3PR 1—vi+1—vs (25
R 4a® | 2G, 2G, | )

This correction can readily be applied as the stress and strain distributions are
inversely proportional to the indenter radius. Clearly, the analysis breaks down if this
correction deviates significantly from unity.
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It is assumed that the indenter radius is large compared with the contact radius
and therefore that the indenter is approximately paraboloidal. As the stresses are
inversely proportional to the indenter radius, a certain error in the indenter profile
will produce an accumulative error in the stresses across the contact region. If the
error in the profile is to be less than 19, then

a
2502 29
R 9)

The coating thickness has been assumed to be small compared with the contact
radius, but as the thickness increases, the situation approaches Hertzian contact of
the indenter on bulk coating material. Figure 5 compares the predictions of the
present theory for the variation of a/ay with ay/h with McCormick’s (1978) result. ay
is the Hertzian contact radius for indentation on bulk coating material with the same
load. Examination of this diagram shows that, assuming McCormick’s predictions to
be accurate, the present theory becomes increasingly accurate with increasing a/h and
is better than

109, fora/h>2 and 3% for a/h > 5. (30)

Hertzian theory will be valid for a/h <1.
Linear elasticity has been assumed throughout but is only valid for small strains.
The maximum strain is &, at r = a and is given by

aZ

G, = —~— +0.

o

However, &, falls off quite rapidly with radius and large strains are localized at the
origin. Therefore, a large strain can be tolerated here. If the strain is limited to 209,
then

h
e <06 R (31)
given that & is approximately a?/6Rh for elastomeric coatings. For other materials
which may fail under shear at strains much less than 209, a more rigid condition
should be imposed. Equations (29)—(31) define regions in an (h/R, a/R)-plane over
which the analysis can be expected to be valid. Figure 6 shows regions 4 where better
than 109 accuracy is achieved, B where the error is less than 3%,. In region C,
Hertzian theory will be a good approximation.

(1) Apparatus. Figure 7 shows the apparatus used to verify the analysis of Section 3.
Weights are used to load a spherical indenter onto a coating which is attached to a
glass slab. The glass has an abraded surface to give a good non-slipping adhesion with
the coating. Ink containing detergent is placed between the glass indenter and coating
in order to provide both lubrication and good visibility of the edge of the contact. The
contact radius is measured by direct viewing from underneath using a travelling
microscope. A dial gauge attached to the loading apparatus gives a direct reading of
the penetration of the indenter. Silicone rubber was used as the coating material as it
is transparent and can readily be cast in a liquid form to any required thickness. The
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FIG. 6. Indentation by a sphere. Regions of validity for the theory in the (h/R, a/R)-plane. Region A4 is better
than 10% and B better than 3%,.
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FiG. 7. Experimental apparatus for measuring contact radius and penetration as a function of the applied
load.
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elastic modulus of the rubber is more than four orders of magnitude less than the
moduli of the indenter and substrate and the correction term of (28) does not differ
significantly from unity. The modulus of the coating varies between specimens and
with time, and it was measured for each specimen individually by hanging weights on
a strip of detached coating and measuring a gauge length as a function of load. The
maximum strains involved were large (up to 10%) and the modulus was estimated
from true stress vs true strain graphs to an accuracy of typically 5%.

Both the contact radius ¢ and penetration d have been measured as a function of
load P and the total region defined in Fig. 6 has been systematically explored.

(i) Load vs contact radius results. Figure 8(a) shows the results of measurements of
the contact radius as a function of applied load. The behaviour predicted by the
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FiG. 8. Indentation by a sphere. (a) Variation of load P with contact radius a. The theory-line is calculated

using the measured values G = 89 kPa, R = 47 mm, h = 2-15 mm and v = 0-5. (b) Results of (a) replotted

as P/a* vs a. The three theory-lines are calculated using the measured value of the elastic modulus and this
value plus and minus the error of 5%,.
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theory is shown and is calculated using the measured values of h = 2:15mm,
R = 47 mm and G = 89 kPa. The fit is extremely good. It should be noted that the
theory-line and experimental points are entirely independent. The degree of fit is
shown better in Fig. 8(b). The error in the data-points is predominantly in the contact
radius. By plotting P/a* vs a the data are spread out by artificially introducing scatter
into the ordinates. The three theory-lines are calculated for the modulus equal to its
mean value and this value plus and minus the error of 5%. There is no significant
systematic deviation of the theory from the data, which shows that although the
theory deviates from McCormick’s (1978) results, the form of the curve is extremely
close to the observed behaviour. Further, the scatter in the data is less than the error
in the modulus. Thus, an estimate of the modulus with a random error of appreciably
less than 5% can be made by fitting the theory directly to the data and very small
differences in modulus can be resolved. This technique is therefore useful for making
in situ non-destructive modulus measurements on soft coatings.

Figure 9 shows the predictions of the present and McCormick’s theories for the
variation of a/ay with ay/h for v = 0-5. The lines represent ‘“‘master-curves” for the
behaviour of all materials of this value of Poisson’s ratio. In essence, these curves give
the variation of contact radius with load, but when plotted in this form the contact
radius can be found from the applied load, which is the more usual requirement of
such a theory. Superimposed upon these curves are data from several experiments for
various values of G, R, h. The data confirm the validity of both the theories within the
expected limits.

(iv) Load vs penetration results. The penetration d (see Fig. 1) of the indenter into the
coating is given by

a2

d=—hé, =0, = 3R —0.h.

Figure 10(a) shows typical results of measurements of d as a function of load. The
open circles are the data-points as measured in the experiment. The theory-line is
calculated for G =24kPa, b=2-88mm and R =47 mm. The data are shifted
horizontally from the theory-line. By adding 90 pm to the measured values of d much
better agreement between theory and experiment is achieved (solid circles). This offset
is due to the error in estimating the height at which the indenter just makes contact
with the coating.

To examine the fit, the modified data-points are replotted in Fig. 10(b) as P/d> vs
d. There is little systematic difference between theory and experiment and the
predictions of the theory are confirmed.

It has been found that the point at which the indenter first contacts the coating is
extremely difficult to observe. Because the penetration varies rapidly with load at this
point any error in this datum level will be extremely significant. Therefore,
measurement of the penetration as a function of load is not as convenient a method
for estimating the coating modulus as measuring the contact radius.
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F1G. 9. Indentation by a sphere. Variation of a/ay with ay/h for v = 0-5. For key to symbols, see Table 1.

TaBLE 1. Key to symbols of Fig. 9

G (kPa) R (mm) h (mm)
o 310 400 115
[ | 310 200 1-15
A 310 47 1-15
v 89 47 215
O 110 15 1-30
O 110 47 1-30
A 300 15 1-81
v 300 47 1-81

3.2 Indentation by cones

The contact radius has been measured as a function of load when a cone is loaded
onto the coating. Typical results are shown in Fig. 11. The theory-line is calculated
for the measured values of G = 310kPa, h = 1-15 mm and 8 = 84-5°, and for v = 1.
Some systematic deviation of the theory from experiment is shown. Figure 12 shows
the predicted behaviour of the dimensionless load

__ Ptan 0
© 27a®G

E3

as a function of a/h. This line represents a “master-curve” for elastomeric coating
materials. Superimposed are data from a number of experiments. The theory deviates
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F1G. 10. Indentation by a sphere. (a) Variation of load P with penetration d. The open circles are the data
as measured and the closed circles are these data with an offset of 90 um on the penetration. The theory-line
is calculated using the measured values G = 24 kPa, R = 47 mm, h = 2-88 mm and v = 0-5. (b) Results of

(a) replotted as P/d® vs d. The three theory-lines are calculated using the measured value of the modulus
and this value plus and minus the error of 5%,.

systematically from data from all experiments. However, the theory ignores the
rapidly changing, and large, stresses near the tip of the cone and some error is to be
expected. The predictions of the theory, albeit limited, are of use as they are well
within an order-of-magnitude accuracy. A more precise solution for conical
indentation can be expected to be considerably more complicated than that provided
by the present theory.

4. DIiSCUSSION AND CONCLUSIONS
An analysis has been developed which describes the axi-symmetric contact on a

coating by an indenter of general cross-section. The assumptions that the coating is
thin and the indenter is large enable certain approximations to be made which
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FIG. 11. Indentation by a cone. Load P vs contact radius a. Theory-line calculated for G = 310 kPa,
0 =84-5°, h=115mm and v = }.
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FI1G. 12. Indentation by a cone. Dimensionless load P* as a function of a/h. v = 4, 0 = 84-5°,

TasLE 2. Key to symbols of Fig. 12

Key G (kPa) h (mm)
( 310 1-15
n 34 3-50
A 260 1-14
v 270 170

simplify the analysis considerably. The solutions for spherical and conical indenters
have been obtained explicitly. The stress distributions within the coating have been
found and are shown to be extremely sensitive to the Poisson’s ratio of the coating. It
is of particular interest that the interfacial shear stress between the coating and
substrate is largest for almost incompressible materials, and therefore these materials
are more likely to debond than others. This is of practical significance. Elastomeric
materials have found a wide use for protecting components from impact damage ; for
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example, vulnerable aircraft components are frequently coated to minimize damage
caused by rain or dust impact [ see, for example, Fyarr (1970) and Scamrrt (1979)].
Elastomers are successful partly because of their large strain-to-fracture and resulting
ability to absorb large amounts of the impact energy in elastic deformation. However,
these materials are inherently weak and are themselves reinforced by adhesion to the
substrate which reduces the strains in the coating which would otherwise be large. If
adhesion is lost they are rapidly eroded with a resulting loss of protection. Good
adhesion is therefore essential for the optimum performance of any compliant
protective coating.

The present analysis can be used to predict properties and minimum useful
thickness of coatings required in various situations. MATTHEWSON (1979) has
determined the Hertz-like radial tensile stresses in the substrate surface, and he shows
that for a well-adhering elastomeric coating they are small and by suitable choice of
coating thickness may be made predominantly compressive—suggesting a minimum
thickness criterion. Using values of parameters typical of the circumstance of rain
erosion, the predicted minimum thickness is found to be ~0-3 mm and compares well
with the values 0-2-0-3 mm used in practice on aircraft components (SCHMITT, 1979).
In new practical situations, the present theory should allow suitable materials to be
chosen much more quickly and efficiently.

The accuracy of the analysis increases with increasing ratio of contact radius to
coating thickness and is typically less than 59, which is acceptable for most
engineering purposes. The theory shows good agreement with experiments using both
spherical and conical indenters and also with McCormick’s theory. Although the
theory presented here is less accurate than McCormick’s and does not cover such a
wide range of coating thickness and modulus, it does have the valuable advantage
that the results are analytical and can be expressed in closed form and can easily be
calculated without the use of special computational techniques. Also, the stress and
strain distributions are readily accessible. The analysis provides a useful way of non-
destructively measuring the coating modulus in situ. The accuracy of the
measurement is only limited by the accuracy of the analysis. However, the error in the
analysis is systematic and so quite small changes in elastic modulus can be resolved by
an indentation technique using this theory.
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