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ABSTRACT 

 
Optical fiber may experience cyclic stresses at frequencies ranging from a few hertz in aerial cables to over a kilohertz due to 
vibration of machinery.  The fatigue behavior of brittle materials typically gives times to failure that correspond to a suitably 
time-averaged applied stress and is independent of the frequency.  Previous studies have been limited in the frequencies used 
but generally show agreement with this simple model.  In this paper we describe results for the cyclic fatigue behavior of 
high strength fused silica optical fibers as a function of stress amplitude and frequency in the range of zero to 100 Hz.  The 
results confirm that fatigue of this material is indeed accurately described by the subcritical crack growth model and the 
results are shown to be frequency independent in the range studied. 
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1. INTRODUCTION 
For the purposes of making reliability estimates for optical fibers, the service stress is usually modeled as a static stress.  
However, in many applications the fiber might also be subjected to a cyclic component of stress superimposed on the static 
component.  The cyclic stress can occur over a broad range in frequency; for example, ~10 Hz due to turbulent airflow past 
aerial cables, ~100 Hz from road traffic noise, and ~1 kHz and above in vibrating machinery.  It is therefore important to 
understand the impact of cyclic stresses on optical fiber reliability. 
 
It is well known that cyclic stresses produce crack growth in metals and polymers due to plastic processes at or near the crack 
tip.  More recently it has been recognized that some polycrystalline ceramics can also exhibit cyclic fatigue by mechanisms 
that are not always clear.1  One mechanism that has been identified in highly tough ceramics is wear of crack bridges by 
repeated rubbing.  A characteristic of cyclic fatigue is that the fatigue rate depends more strongly on the stress amplitude than 
on the mean stress.  Damage is introduced on each stress cycle and so the failure criterion is one of cycles to failure – the 
time to failure therefore directly depends on the cyclic frequency.  However, it is usually thought that brittle materials do not 
exhibit cyclic fatigue though failure still occurs by stress corrosion cracking.  The time to failure therefore depends on a 
suitable time average of the stress and has no dependence on the frequency.  As a result of the anticipated lack of a cyclic 
fatigue effect, there have been few studies of cyclic fatigue in glasses. 
 
Evans and Fuller2 have determined how the time to failure under cyclic fatigue should depend on the mean stress and stress 
amplitude if the only process occurring during cyclic fatigue is subcritical crack growth.  Comparison of experiment with 
their theory and the dependence of time to failure on frequency can be used to determine if any cyclic effects are occurring 
over and above subcritical crack growth.  Evans and Fuller2 compared their theory to the limited published experimental data 
for bulk glass but the results were inconclusive due to the large scatter in the measurements.  They did, however, find that 
slow crack growth data for glass and porcelain is primarily due to stress corrosion.  Evans and Linzer3 found no cyclic effects 
for crack propagation in glass up to a frequency of 600 Hz.  Dill et al.4 did observe cyclic effects in slow crack growth in 
borosilicate glass.  However, strength and static fatigue measurements of bulk glass specimens generally have too much 
scatter to provide a sensitive enough test for cyclic effects.  Optical fibers in short lengths have very much lower scatter in 
their mechanical properties and so provide a better opportunity for detecting any cyclic effects. 
 
Wysocki et al.5 applied cyclic stress to aluminum coated fiber and found that failure of the fiber only occurred after failure of 
the aluminum by metal fatigue.  Rogers6 attached optical fibers to a crank to simulate a fiber sensor attached to the piston in 
an internal combustion engine.  The fibers were flexed at 28.8 Hz under relatively low stress.  Polyimide and acrylate coated 
fibers did not fail after an hour, as would be expected for subcritical crack growth.  However, aluminum coated fibers failed 
in minutes due to fatigue of the metal coating.  This shows that, while cyclic effects in glass might not be a concern for 
reliability, other components in a fiber or cable structure might well accelerate failure of the fiber.  Katsuyama et al.7 found 
no deviation from the Evans and Fuller model2 for cyclic fatigue of silicone/nylon coated fibers at low frequency (~0.007 to 
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0.07 Hz) and for relatively short times to failure (  1000 s, i.e.  70 cycles to failure).  Mauron et al.8 studied fiber Bragg 
gratings in tension under cyclic fatigue at 4 Hz and found no cyclic effects.  In other work, they did observe cracking of a 
polyimide coating under cyclic conditions.9  Roneree et al.10 presented preliminary results for cyclic fatigue of high strength 
fiber in two-point bending at frequencies up to 100 Hz and also found no evidence of cyclic effects.  While it appears from 
the previous work on fused silica optical fiber that there is no cyclic fatigue effect in the glass, other than the effect of 
subcritical crack growth, published studies are limited and have not explored a broad range of frequency or stress amplitude 
and so do not provide a sensitive test for cyclic effects.  We present here results for cyclic fatigue in two-point bending at 
frequencies from zero to 100 Hz. 
 

2. THEORY 
Evans and Fuller2 used the subcritical crack growth model to predict how the time to failure under cyclic conditions depends 
on the mean applied stress and stress amplitude.  They showed that, under certain restrictions, the time to failure under cyclic 
conditions, cyclic

ft , could be expressed in closed form: 
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σ0 is the mean stress, ∆σ is the stress amplitude (half of the peak to peak amplitude), static
ft  is the time to failure under a 

constant stress, σ0, and n is the stress corrosion susceptibility parameter.  The assumptions used to obtain this result are: 
 
1. Power law crack growth kinetics, namely: 

 n
IAK

dt
dc

= , (2) 

where KI is the stress intensity factor. 
2. n is integer. 
3. Sinusoidal stress profile: 

 )sin1(sin)( 00 ttt ωζ+σ=ωσ∆+σ=σ . (3) 

4. Large number of cycles to failure, i.e. 1>>ω cyclic
ft . 

 
If any of these assumptions are violated, it will usually mean that the time to failure must be calculated by numerical 
integration of the fatigue equations. 
 
We have developed a simple numerical approach to determining the time to failure under static conditions that does not 
require any of the assumptions above to be made.  It uses a general form for the crack growth kinetics: 

 )( IKV
dt
dc

= . (4) 

Elimination of c from this equation and from the well known fracture mechanics relation: 

 cYK I σ= , (5) 

where Y is the crack shape parameter, gives: 
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This can be converted to a finite difference equation: 
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which can provide the basis for a simple numerical integration algorithm that can be used for any kinetics model, )( IKV  
(including the power law with non-integer n), and for any stress profile, )(tσ .  However, in the experiments described in this 
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paper, the fiber is loaded by a stepper motor.  σ(t) can be idealized for such a stepper motor system as a sequence of periods 
of static stress that change at each step the motor takes – a continuous form for σ(t) is approximated by a sequence of discrete 
steps.  However, (7) can be used to accurately model the stepper motor loading.  ∆t is taken as the time between steps.  The 
value of KI is calculated for each step from the stress at the start of the step and the current crack length.  The change in KI is 
then calculated from (7), from which the new crack length is determined after the step at a time ∆t later.  The stepper motor 
moves to give a new stress at the start of the next step and the process is repeated until KI  exceeds KIC, the critical stress 
intensity factor, at which time the specimen fails.  The only restriction on this approach is that there must be a sufficiently 
large number of steps to failure to ensure that KI does not change much during each step else the finite difference equation (7) 
is inaccurate.  Sufficient accuracy is expected for  100 steps to failure.  Another consideration is that this integration 
scheme will become computationally inefficient for a very large number of motor steps to failure.  However, it has been 
successfully applied to >106 steps to failure with computation times on the order of seconds. 
 

3. EXPERIMENTAL 
Cyclic fatigue has been performed on 125 µm diameter fused silica optical fiber covered with a UV-curable acrylate coating 
of outer diameter 250 µm.  Fibers were tested immersed in 25.0±0.5°C distilled water after preconditioning in the water for at 
least 24 hours.  The fibers were broken using a two-point bending technique11 in which the fiber is supported between 
grooved faceplates.  The faceplates are moved by a stepper motor driven precision translation stage with an absolute 
positioning error of less than approximately ±10 µm from all sources (zero offset, non-linearity, backlash, etc.).  The 
resolution of the translation stage is 1 µm per step.  The motor is controlled by a computer which times the steps to a 
precision of ±50 µs.  The computer was programmed to give an inscribed piece-wise approximation to a sinusoidal variation 
in applied stress.  These specifications mean that the stress at any given time is well within an error of 1% for the entire 
duration of the experiment.  This precision control would be extremely difficult to achieve using other commonly used 
loading techniques, such as uniaxial tension. 
 
The relationship between faceplate separation, d, and stress on the fiber is non-linear: 
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Where df and dc are the glass and coating diameters, dg is the depth of the grooves in the faceplates and E is the Young’s 
modulus of the glass.  Therefore the faceplate speed and acceleration do not vary sinusoidally with time for a sinusoidal 
variation in stress (3): 
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However, the computer program can readily calculate the necessary stepping profile for a sinusoidal or any other stress 
profile. 
 

4. RESULTS 
Figure 1 shows experimental results for a mean stress of σ0 = 4300 MPa and for frequencies in the range of 0 to 100 Hz.  
Also shown are the predictions of the Evans and Fuller model,2 (1), for n = 20.  The numerical integration scheme has been 
used to predict the behavior using the power law (2) for frequencies of 1 and 10 Hz.  The 10 Hz result is indistinguishable 
from the Evans and Fuller model, thus validating the accuracy of the integration algorithm.  The agreement between these 
curves and the data is close for all frequencies, indicating no cyclic effects over and above subcritical crack growth. 
 
At the lower frequency of 1 Hz, steps in the predicted behavior are observed at high stress amplitude.  This behavior is 
expected because there is a small number of cycles to failure at this frequency – the Evans and Fuller model is inaccurate 
under these circumstances.  The steps in the curve are caused by failures being clustered on the rising edge of the stress sine 
wave.  This point is illustrated by the Weibull plot in Figure 2 which shows the distributions of failure times for a frequency 
of 0.3 Hz at four different stress amplitudes.  The upper horizontal axis marks the times at which the stress is a maximum 
(after ½ , 1½ , 2½ .... periods).  The clustering close to these maxima is then apparent.  It can be seen that, depending on 



 
56 Proc. SPIE Vol. 4215 

where the time to failure distribution lies compared to the maxima, either narrow or anomalously broad distributions can be 
observed.  This explains the large variability in the error bars observed in Figure 1 at large stress amplitude.  These results 
show that the integration scheme can successfully predict not only the mean time to failure, but also the shape of the time to 
failure distribution as well. 
 
Figure 3 shows the data of Figure 1 regraphed as time to failure versus frequency for various stress amplitudes.  The failure 
times do not show any systematic trend with frequency.  Therefore, at least in the frequency range considered, the fatigue is 
frequency independent, again indicating that there are no additional cyclic effects. 
 
Figure 4 shows the time to failure as a function of amplitude for mean stresses of 3900 and 4300 MPa.  Figure 4(a) shows 
that the behavior for 3900 MPa can be predicted from the behavior at 4300 MPa using the numerical integration scheme and 
a value of n = 20.  This means that when the failure times are normalized to the time to failure under static conditions, Figure 
4(b), the data all lie on one master curve. 
 
The numerical integration scheme has been used to fit other kinetics models besides the empirical power law (Eq. 2), 
designated model 1.  Two other kinetic forms that are based on chemical kinetics models have also been fitted, namely model 
2:12 

 )exp( IKnA
dt
dc ′′= , (11) 

and model 3:12 

 )exp( 2
IKnA

dt
dc ′′′′= . (12) 

The results of the fitting are shown in Figure 5.  All three models provide a good fit to the data and so the data can not be 
used to distinguish the most appropriate kinetic form.  The three models show the same trends at lower amplitude but their 
predictions diverge for ζ  0.2.  In on going research we are making a more extensive investigation at higher amplitudes in 
order to provide evidence to distinguish between the models.  It is important to know which form is most appropriate since 
lifetime predictions are sensitive to this form.  In particular, the empirical power law predicts longer lifetimes than the 
exponential forms13,12 and is therefore not as conservative. 
 

5. CONCLUSIONS 
The two-point bending technique has been used to investigate the cyclic fatigue behavior of high strength fused silica optical 
fiber.  The results agree well with the predictions of the subcritical crack growth model for fatigue.  In particular, the results 
are found to be independent of the frequency of the cyclic component of stress up to 100 Hz.  These results indicate that, at 
least in the range of stress and frequency studied here, there are no additional cyclic fatigue effects over and above subcritical 
crack growth. 
 
A numerical integration scheme has been developed that accurately models the stress history in the two-point bend apparatus 
when driven by a stepper motor.  This integration scheme avoids the limitations of the closed form result of Evans and 
Fuller.2  The scheme has been used to fit several different crack growth kinetics models to the experimental data.  It is shown 
that extensive cyclic fatigue data have the potential to distinguish between these models.  It is noted that predicted lifetime of 
optical fiber is sensitive to the form of the kinetics model. 
 
While the results of this and earlier work indicate that the cyclic fatigue behavior can be explained solely in terms of 
subcritical crack growth, the results are for moderate frequencies and relatively short failure times.  These results therefore do 
not preclude the possibility of additional cyclic effects that might only become apparent after a very large number of stress 
cycles, i.e. for higher frequencies and long times to failure.  Further work is needed to establish definitively whether cyclic 
fatigue causes increased degradation. 
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Figure 1.  Time to failure under cyclic fatigue as a function of stress amplitude, ζ, for a mean stress of 
σ0 = 4300 MPa.  Data are for frequencies ranging from 0 to 100 Hz. 
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Figure 2.  Weibull distributions for the time to failure for a mean stress of σ0 = 4300 MPa and frequency 
0.3 Hz for stress amplitudes, ∆σ = 552, 736, 920 and 1075 MPa. 
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Figure 3.  Data from Figure 1 regraphed as a function of frequency.  σ0 = 4300 MPa. 
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Figure 5.  Three forms of the crack growth kinetics model fitted to the data of Figure 1. 
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Figure 4.  (a) time to failure and (b) time to failure normalized to the static failure time, as a function of 
stress amplitude for mean stresses, σ0, of 3900 and 4300 MPa.  Prediction lines are calculated for n = 20. 


