Modeling of Gas Phase Transport and Composition Evolution during the Initial Stage Sintering of Boron Carbide with Carbon Additions

M. A. Rossi, M. J. Matthewson^{*†}, A. Kaza[‡], D. Niesz[†], R. A. Haber[†]

Department of Materials Science and Engineering Rutgers, The State University of New Jersey 607 Taylor Road, Piscataway, New Jersey 08854

Abstract

Densification of B_4C during sintering can be aided by removing the native B_2O_3 (condensed) layer present on the starting B_4C powder. B_2O_3 can be removed by adding excess C and holding the powder compact at an intermediate temperature below the normal sintering temperature. This allows time for CO and minor boron gases to diffuse out from the porous compact before the pores close. This process is examined using a computational model based on co-diffusion of multiple gas species, which enables prediction of the gas and condensed phase composition as a function of time and position in the specimen. The model, previously described elsewhere, was originally applied to the SiC/SiO₂ system but has been adapted for the B_4C/B_2O_3 system. The results are used to determine the optimum holding time for complete B_2O_3 (condensed) removal as a function of key parameters, such as specimen thickness, particle size, temperature, *etc*. The role of gas phase transport in residual C and B_4C profiles is also examined.

*Communicating author's e-mail: mjohnm@fracture.rutgers.edu

[†]Fellow of the American Ceramic Society

[‡]Current affiliation: Intel Corporation, Portland Oregon

I. Introduction

Lee and Speyer¹ suggest that reduced densification during pressureless sintering of B_4C without sintering agents may be due to the presence of a $B_2O_3(c)$ film on B_4C particles.^{1,2} The B_2O_3 film prevents direct contact between B_4C particles (and a resulting increase in densification) and acts as a rapid diffusion path at large particle surfaces, facilitating particle coarsening.^{1,3} The addition of SiC, Al₂O₃, TiB₂, AlF₃ and W_2B_5 have been used to enhance densification, but has caused grain growth.³ The removal of the $B_2O_3(c)$ coating permits direct B_4C particle contact, and an increase in densification.³ The addition of C aids the removal of the $B_2O_3(c)$.¹⁻³ This is analogous to what occurs in the SiC system,⁴⁻⁷ in which it is thought that one of the factors leading to high density SiC is the complete removal of the SiO₂ oxide layer at temperatures lower than typical sintering temperatures.

The amount of C added to the starting B_4C powder is important because there must be enough C for complete $B_2O_3(c)$ reduction, to prevent low final densities, while C inclusions from an excess C content will lead to a deterioration of mechanical properties.¹ The holding time at a particular temperature is also critical – sufficient holding time must be provided to remove all $B_2O_3(c)$; however, a longer holding time leads to grain coarsening and a less efficient heating cycle.¹⁻³

The B_2O_3 is removed via the gas phase and so gas diffusion is the rate determining step for complete removal of B_2O_3 . The purpose of the current work is to model the gas diffusion to determine the needed hold time as a function of key parameters such as temperature, pore size, *etc.*, as well as to examine the spatial variation in residual B_4C and C content after complete removal of $B_2O_3(c)$.

II. The Model

Thermodynamic data have been obtained for the various gas species that are present in the $B_4C/C/B_2O_3(c)$ system.⁸⁻¹⁰ Figure 1 shows the partial pressure of several gas species

in equilibrium with the starting composition of B_4C , C and $B_2O_3(c)$, as a function of temperature. Many species have an extremely small partial pressure in the temperature range of interest (~1200 to 2500 K); thus, they have a negligible impact on the rate of mass transport in the gas phase and so can be safely ignored in the modeling.

The removal of $B_2O_3(c)$ from the $B_4C/C/B_2O_3$ system in the presence of trace chemical species, such as those present as contaminants (*e.g.*, H₂O), is not considered in this paper. The underlying assumption is that the model is operating in ideal vacuum conditions and at high temperatures. We therefore assume that any species that are volatile at lower temperatures will have already been removed – this includes water.

 B_4C is well-known to exhibit carbon deficient non-stoichiometry over a broad range of composition. Non-stoichiometric B_4C will consume free carbon and must be stoichiometric with unit activity in the presence of pure carbon (also unit activity).¹³ Therefore, extra carbon is needed to avoid incomplete B_2O_3 (c) removal. The additional quantity can be calculated from the starting B_4C stoichiometry; provided the necessary extra carbon is added, the non-stoichiometry of the starting B_4C does not impact the ability of the carbon to remove B_2O_3 (c).

(1) The Gas Diffusion Model

The model considers the diffusion of four gas species through the specimen pores. These include CO, the most abundant gas, B_2O_2 and $B_2O_3(g)$ which are the most abundant gases containing B and BO. O_2 is also considered even though its pressure is very low in this system, because it is a convenient vehicle for calculations.

This situation is analogous to sintering of SiC. In that system, the native SiO_2 can also impede densification and can be removed by the addition of C. The oxygen is removed primarily by effusion of CO, although the minor species SiO is important for controlling interparticle neck growth. In previous work¹¹ we describe a detailed model for multiple species gas co-diffusion to examine how gas partial pressures and condensed

phase composition varies with time and position inside an SiC body. The model is used to determine how the hold time needed for complete SiO_2 removal depends on key parameters.

This model has been adopted for use with the $B_4C-C-B_2O_3$ system. Some adaptations are simple, such as using appropriate thermodynamic data and molecular diameter data. However, some aspects of the computational model required significant changes, including complete changes of the stoichiometric coefficients (which are hardcoded in the computer program for efficiency). Also, there is only one significant Si containing gas in the SiC system (*i.e.* SiO) whereas there are three in the B_4C system (B_2O_2 , B_2O_3 , BO). The reader is referred to Kaza, *et al.* for details of the computational model.¹¹ Here we limit ourselves to outlining where the model for B_4C differs significantly from the SiC model.

The problem is modeled using a finite difference method where a one-dimensional body (large plate) is divided into a finite number of nodes and the composition at each node and diffusion between adjacent nodes are calculated over a series of time steps. Various boundary conditions can be applied to the free surface. In this work we assume the body is exposed to vacuum so that any gas flowing out is immediately removed.

The model assumes that the composition of the gas phase at each node is locally always in equilibrium with the condensed phases. At each time step, gases can diffuse into or out of each node at a rate given by the Dusty Gas Model (DGM). The DGM implementation used in the model is due to Mason and Malinauskas¹² and incorporates three mechanisms: Knudsen diffusion, continuum or inter-diffusion, and diffusion due to viscous flow. Knudsen diffusion involves gas molecule-pore wall interactions. Inter-diffusion accounts for the interaction between the multiple gas species, while the diffusion due to viscous flow arises from pressure gradients in the gas mixture.

The gases are replenished by adjusting condensed species composition at each node. As in the SiC model, two distinct thermodynamic regimes of interest can be identified. In Regime 1, all three condensed phases are present, B_4C , C, $B_2O_3(c)$, while in Regime 2 the $B_2O_3(c)$ has been completely exhausted. Equilibrium conditions are calculated differently for each regime.

(2) Thermodynamics

Regime 1

In this regime, the determination of equilibrium gas partial pressures can be performed directly because there are three condensed phases (Note that, depending on the temperature, the standard state of B_2O_3 (condensed) can be either solid or liquid since the melting point is 723 K) and three atomic species. As a result, any gas species can be expressed in terms of the condensed species alone

$$CO(g) = \frac{1}{3} B_2 O_3(c) + \frac{7}{6} C(s) - \frac{1}{6} B_4 C(s)$$
(1)

$$B_2 O_2(g) = \frac{2}{3} B_2 O_3(c) - \frac{1}{6} C(s) + \frac{1}{6} B_4 C(s)$$
(2)

$$B_2O_3(g) = B_2O_3(c)$$
 (3)

BO(g) =
$$\frac{1}{3}$$
 B₂O₃(c) - $\frac{1}{12}$ C(c) + $\frac{1}{12}$ B₄C(c) (4)

$$O_2(g) = \frac{2}{3} B_2 O_3(c) + \frac{1}{3} C(c) - \frac{1}{3} B_4 C(c)$$
(5)

The standard free energy change for each of the above reactions is determined by summing the free energies of the individual species. The equilibrium constant can be calculated and expressed in terms of the activities. For CO

$$K_{\rm CO} = \exp\left(-\frac{\Delta G_{\rm CO}^{\circ}}{RT}\right) = \frac{a_{\rm B_2O_3}^{1/3} a_{\rm C}^{7/6} a_{\rm B_4C}^{-1/6}}{p_{\rm CO}}.$$
 (6)

Assuming the condensed species have unit activity (pure), this gives the partial pressure of CO (p_{CO}) directly

$$p_{\rm CO} = \exp\left(\frac{\Delta G_{\rm CO}^{\circ}}{RT}\right) \tag{7}$$

The partial pressures of the other gas species are calculated in an analogous fashion. The assumption of unit activity of the condensed species is made for the sake of simplicity. Therefore, the model used for this work does not account for the well-known non-stoichiometry that B_4C can exhibit^{13,14} but assumes that the B_4C has consumed enough of the free carbon to become stoichiometric, as described earlier.

Regime 2

In Regime 2, the calculation of equilibrium gas partial pressures can not be performed explicitly because oxygen is absent from the condensed phases. However, they can be expressed in terms of the condensed species and any oxygen containing gas; O_2 has been used for convenience

$$CO(g) = 0.5 O_2(g) + C(s)$$
 $p_{CO} = p_{O_2}^{1/2} K_{CO}^{-1}$ (8)

$$B_2O_2(g) = 0.5B_4C(s) + O_2(g) - 0.5C(s) \qquad p_{B_2O_2} = p_{O_2}K_{B_2O_2}^{-1}$$
(9)

$$B_2O_3(g) = 1.5O_2(g) + 0.5B_4C(s) - 0.5C(s) \qquad p_{B_2O_3} = p_{O_2}^{3/2} K_{B_2O_3}^{-1}$$
(10)

BO(g) =
$$0.25 B_4 C(s) + 0.5 O_2(g) - 0.25 C(s)$$
 $p_{BO} = p_{O_2}^{1/2} K_{BO}^{-1}$ (11)

The additional constraint needed to solve these simultaneous equations is mass balance; namely that the quantity of each atomic species does not change as the system maintains equilibrium at every region as the various gases diffuse in or out of a particular region. It is sufficient to only consider oxygen. The total number of moles of oxygen atoms (*i.e.* g-atoms of oxygen) is given by

$$n_{\rm O} = A \Big(p_{\rm CO} + 3 p_{\rm B_2O_3} + 2 p_{\rm B_2O_2} + p_{\rm BO} + 2 p_{\rm O_2} \Big), \tag{12}$$

where *A* is a factor that converts from gas partial pressure (in atmospheres) to number of moles, taking into account the properties of an ideal gas, the volume associated with the

region under consideration, and the porosity. Substituting in terms of p_{O_2} from equations (8) to (11), gives

$$n_{\rm O} = A \Big(p_{\rm O_2}^{1/2} K_{\rm CO} + 3 p_{\rm O_2}^{3/2} K_{\rm B_2O_3} + 2 p_{\rm O_2} K_{\rm B_2O_2} + p_{\rm O_2}^{1/2} K_{\rm BO} + 2 p_{\rm O_2} \Big).$$
(13)

The equation constants are again found from thermodynamic data. Conservation of O requires the solution of a cubic equation in $p_{O_2}^{1/2}$ (compared with a quadratic equation for the SiC system).

(3) Conservation of Matter

Once the gas phase composition is adjusted to maintain local equilibrium, the composition of the condensed phase is adjusted to maintain overall conservation of matter. This is assumed to occur rapidly so that reaction kinetics are not rate determining. This assumption was justified for the SiC system for which density gradients are observed in sintered SiC bodies of size ~ 1 cm (which would not be observed if reaction kinetics were rate controlling). This assumption will also be valid for B₄C for sufficiently large bodies. However, gas diffusion will be rapid in very small bodies and so in that case reaction kinetics will be rate controlling. The model here will therefore only be valid for B₄C bodies above some size. Unfortunately there are no data available in the literature for reaction kinetics, so it is not possible to explicitly find where the rate controlling process changes. However, it is clear that the longer the required time for complete B₂O₃ removal, the less likely that reaction kinetics are controlling.

The change in the quantity of each condensed species is calculated using the reactions given in equations (1) to (5). For example, in Regime 1, the change in the number of moles of each solid is given by

$$\delta n_{\rm C} = -\frac{7}{6} \,\delta n_{\rm CO} + \frac{1}{6} \,\delta n_{\rm B_2O_2} + \frac{1}{12} \,\delta n_{\rm BO} - \frac{1}{3} \,\delta n_{\rm O_2} \,, \tag{14}$$

$$\delta n_{\rm B_4C} = \frac{1}{6} \,\delta n_{\rm CO} - \frac{1}{6} \,\delta n_{\rm B_2O_2} - \frac{1}{12} \,\delta n_{\rm BO} + \frac{1}{3} \,\delta n_{\rm O_2} \,, \tag{15}$$

$$\delta n_{\rm B_2O_3} = -\frac{1}{3} \,\delta n_{\rm CO} - \frac{2}{3} \,\delta n_{\rm B_2O_2} - \delta n_{\rm B_2O_3} - \frac{1}{3} \,\delta n_{\rm BO} - \frac{2}{3} \,\delta n_{\rm O_2} \,. \tag{16}$$

The coefficients in each equation are the stoichiometric coefficients for the corresponding solid in equations (1) to (5) with the sign changed to recognize that if the stoichiometric coefficient is positive, that amount of solid decreases when the amount of gas increases. Similar results are obtained for Regime 2 using equations (8) to (10).

$$\delta n_{\rm C} = -\delta n_{\rm CO} + 0.5 \,\delta n_{\rm B_2O_3} + 0.5 \,\delta n_{\rm B_2O_2} + 0.25 \,\delta n_{\rm BO} \,, \tag{17}$$

$$\delta n_{\rm B_4C} = -0.5 \,\delta n_{\rm B_2O_3} - 0.5 \,\delta n_{\rm B_2O_2} - 0.25 \,\delta n_{\rm BO} \,. \tag{18}$$

(4) **Reference Modeling Conditions**

Table I describes a set of "reference" parameter values that are in the range typical of values encountered when sintering B_4C parts. The reference case represents the conditions described by Dole *et al.*,¹⁵ for samples prepared with a 6 wt% C addition. The effect of varying the parameters from this reference case has been studied.

III. Results and Discussion

(1) **Results for the "Standard" Case**

Figures 2 to 4 show how the gas pressures and condensed phase composition vary with time and position through the thickness of the body for the reference conditions specified in Table I. Initially, all gases are set to the equilibrium partial pressure for an isothermal temperature of 1640 K. There is no driving force for diffusion except at the specimen surface. As time progresses, the gasses diffuse out from the surface, gradually exhausting the $B_2O_3(c)$. It can be seen that $B_2O_3(c)$ is exhausted first at the region near the surface and last near the center. An abrupt interface separates the two regions. A reaction front therefore propagates into the body corresponding to the position where the system is changing from Regime 1 to Regime 2. Here, the quantity of B_2O_3 is decreasing with time. The interior of the specimen is in Regime 1, and has the starting composition. The partial pressures in this region do not change with time, so there is negligible driving

force for diffusion until the reaction front arrives, explaining the flat-topped pressure profiles observed in figures 2 and 3. The region nearer the surface is in Regime 2 and is exhausted of $B_2O_3(c)$. CO is the dominant gas species and so dominates the diffusion kinetics. The total amount of CO evolved from a small region is much larger than the volume of the pores in that region. Therefore, the reaction front moves slowly and quasistatic conditions are approximately maintained. Thus, the pressure profile for CO while in Regime 2 is approximately that for steady state Fickian diffusion in one dimension, namely the pressure decreases linearly from the equilibrium regime 1 pressure at the reaction front to zero at the surface. The partial pressures of the other gas species are primarily controlled by CO, due to its abundance. Therefore, their pressure profiles are controlled by the constraint of local equilibrium rather than by the rate of diffusion. The equilibrium between these gases and CO can be examined using the following reactions; noting that only B_4C and C are present in the solid phase in Regime 2

$$B_{2}O_{3}(g) = 3CO(g) + 0.5B_{4}C(s) - 3.5C(s) \implies p_{B_{2}O_{3}} \sim p_{CO}^{3}$$

$$B_{2}O_{2}(g) = 2CO(g) + 0.5B_{4}C(s) - 2.5C(s) \implies p_{B_{2}O_{2}} \sim p_{CO}^{2}$$

$$BO(g) = CO(g) + 0.25B_{4}C(s) - 1.25C(s) \implies p_{BO} \sim p_{CO}$$
(19)

This explains why, for a linear CO profile, the $B_2O_2(g)$ and $B_2O_3(g)$ profiles are curved while the BO profile is linear (Figure 3).

When the reaction front reaches the center of the sample, $B_2O_3(c)$ is completely exhausted everywhere and this corresponds to the time for complete removal, t_c . For the "reference" case, $t_c = 961$ s. The behavior of the C concentration is the same except that there is some residual carbon, since excess carbon is included in the starting composition to ensure complete removal of $B_2O_3(c)$ everywhere.

If the time for complete B_2O_3 (c) removal is short compared with the time to heat the B_4C through the temperature range of interest (~1600-1800 K) then the kinetics of CO removal would not be important since the heating cycle naturally provides sufficient

time. Our reference state needs ~15 minutes for complete B_2O_3 (c) removal so that gas diffusion is probably not rate controlling. However, the reference condition is chosen somewhat arbitrarily. Other reasonable parameter values can give very much longer times (*e.g.* for plates much thicker than 1 cm and for smaller grain/pore sizes). So the model is still useful because it can be used to determine whether an intermediate hold time is needed, and, if it is needed, how long it should be.

(2) Influence of Parameter Values on Hold Time for Complete B₂O₃ Removal

The model has been used to investigate the effect of the various parameters on the time needed for complete $B_2O_3(c)$ removal. These studies involve holding all parameters the same as in the "reference" case defined in Table I except for the parameter of interest.

Figures 5 to 10 show the effect of the various parameters on holding time, t_c . Many of these parameters will be related in a particular material – changing grain size, porosity, pore size *etc.* will all change surface area and so change the quantity of B_2O_3 present. However, we do not in advance know the relationship between these parameters for any given specimen – they must be measured. Once measured, parameter values of interest can be used for input to the model. Since none of the parameters used by the model are artificially coupled in any way, its general applicability is conserved. These parameters are hard to measure and it is unrealistic that they should be measured for every specimen. However, the model is useful since is shows what trends are expected to be seen as the various parameters change.

In the present work, three gases act to deplete B from B_2O_3 , leading to the need for more complex mathematical relationships to describe system behavior than required by the SiC system. However, since the resulting difference in behavior is very slight, it is thought that the simple relationships previously developed for the SiC system are acceptable here.¹¹ Table II describes the influence of each parameter on the holding time for depletion of B_2O_3 in the B_4C system.

(3) Semi Empirical Equation for the Holding Time

The dependence of holding time on an individual parameter such as sample thickness, pore size, porosity *etc.* is described in table II. In all cases, the dependence of t_c on each parameter can be put in a linearized form by finding an appropriate function of the parameter. Using the example of porosity, the model finds that t_c varies approximately linearly with $(1-\varepsilon)/\varepsilon$ for reasons that are explained in Reference 11. This results in an equation of the form $t_c = t_0 (1+b_{\varepsilon}\Delta[(1-\varepsilon)/\varepsilon])$ where $\Delta[(1-\varepsilon)/\varepsilon]$ is the change in $(1-\varepsilon)/\varepsilon$ going from the reference state to the conditions of interest. The coefficient b_{ε} is the slope of a straight line fitted to t_c as a function of $(1-\varepsilon)/\varepsilon$ and describes the sensitivity of t_c to this parameter. Table II shows these linearized forms for all the parameters under consideration, together with their coefficients.

Assuming that the dependencies of t_c on the various parameters are weakly coupled, the dependence of t_c when multiple parameters are varied simultaneously can be described by combining the equations given in table II

$$t_{c} = t_{0} \left(1 + b_{\varepsilon} \Delta \left[\frac{1 - \varepsilon}{\varepsilon} \right] \right) \cdot \left(1 + b_{r} \Delta \left[\frac{1}{r} \right] \right) \cdot \left(1 + b_{q} \Delta \left[q \right] \right) \times \left(1 + b_{l} \Delta \left[l^{2} \right] \right) \cdot \left(1 + b_{X_{B_{2}O_{3}}} \Delta \left[X_{B_{2}O_{3}} \right] \right) \exp \left(-b_{T} \Delta \left[T \right] \right)$$

$$(20)$$

The amount by which each parameter is varied gives an idea of how sensitive t_c is to that parameter. The model has been run for the case where all parameters are simultaneously adjusted by the amounts shown in Table III. Under these circumstances, if the t_c for each parameter were doubled, *i.e.* $t_c = 2.0t_0$, equation (20) predicts that t_c would be increased to $64t_0 = 17.09$ hr; the model gives a value of 18.44 hr. This shows that the coupling between the individual parameters is weak, so that equation (20) makes good predictions of t_c even when the parameters are changed by a large amount. Equation (20) can be used to provide guidance for the needed holding time, even for conditions where the parameters deviate significantly from the values in Table I, thus obviating the need to run the computer model for every set of experimental parameters.

In this context, "coupling" refers to the extent to which the various parameters interact within the dusty gas model. In practice, the values of the parameters will be extrinsically coupled by other considerations – as already mentioned, changing the porosity, pore size *etc*. will change the amount of B_2O_3 which contaminates the particle surfaces. Such extrinsic coupling will likely be strong. However, we show here that the intrinsic coupling of the parameters within the dusty gas model is weak.

(4) Spatial Variation of Final Composition

Spatial Variation in B₂O₃ Content

As mentioned, B_2O_3 is detrimental to the densification of B_4C due to the occurrence of non-densifying mechanisms¹⁻³ such as grain coarsening.¹⁵ The results presented here show that the depletion of B_2O_3 begins near the surface and ends at the specimen center (figure 4). If the hold time is less than t_c , the interior region will contain more B_2O_3 than regions near the surface. This suggests that density gradients could arise after sintering, with regions near the surface exhibiting higher densities. This prediction is supported by the observation of less grain coarsening near the surface of a B₄C specimen fired without added carbon; this was attributed to removal of B₂O₃ by volatilization from the surface.¹⁵

The time needed for complete B_2O_3 removal (t_c) obviously depends on the starting B_2O_3 content. In this work, the amounts of carbon and B_2O_3 were adjusted to coincide with a particular experimental case.¹⁵ The starting C/B₂O₃ ratio (under the "standard" conditions described in table I) is 20.9, which is more than enough to ensure complete B_2O_3 removal throughout the body while maintaining sufficient carbon to ensure the B_4C -C system remains stoichiometric.

Spatial Variation in C and B₄C Content

In the previous work on the SiC-C-SiO₂ system¹¹ there were minor variations in the final solid composition across the thickness of the SiC body. This was a minor effect caused by the diffusion of SiO out of the interior region of the solid compact; this SiO partially reacts with remnant carbon nearer the surface thus depleting the carbon near the surface slightly more than near the center. Similar effects have been found for the B₄C system but they are more pronounced because the ratio of the $p_{B_xO_y}$ (primarily B₂O₂ and B₂O₃ and a small amount of BO) to p_{CO} is greater than the ratio of p_{SiO} / p_{CO} in the SiC system - more oxygen is transported out of the body in species other than CO in the B₄C system. This results in a significant compositional variation across the thickness of the final B₄C body that could have practical importance.

Figure 11(a) shows the residual C as a function of position after complete removal of B_2O_3 at t_c . As mentioned, more C is consumed near the surface due to reaction with B_xO_y gases. The oxygen in condensed (liquid) B_2O_3 is removed primarily via CO. Rearranging equation (1) gives

$$B_2O_3(c) + 3.5C(s) = 3CO(g) + 0.5B_4C(s)$$
 (21)

suggesting that 3.5 moles of C are required to remove each mole of B_2O_3 . However, the reaction with additional B_xO_y gases perturbs this value. Figure 11(b) uses the data from 11(a) to determine the amount of C consumed for each mole of B_2O_3 as a function of position. While on average about 3.5 moles of C are needed, nearly 4 moles are needed at the surface in order to avoid complete consumption of C, which in turn would lead to loss of stoichiometry of the B_4C .^{13,14} Therefore, under the "standard" conditions defined in Table I, the minimum necessary C/ B_2O_3 ratio is slightly less than four. For a uniform starting distribution of carbon, the final distribution is necessarily non-uniform; excess carbon must be added to ensure there is sufficient carbon throughout the volume of the

body. Figure 11(b) suggests how the starting profile of C composition can be manipulated to produce a more uniform final C profile.

The C/B₂O₃ ratio is determined for a uniform starting composition. In practice, any variability in composition will mean more carbon needs to be added, so there is enough locally for complete $B_2O_3(c)$ removal throughout the specimen. The influence of local composition fluctuations is the subject of a future paper.

The distribution of residual C for a starting uniform distribution can be examined as a function of all the key variables examined above. Figure 12(a) shows the effect of temperature (*T*) on the residual C profile at t_c . Increasing *T* leads to larger C distribution gradients. Figure 12(b) shows the corresponding final distribution of B₄C – in regions where more C is consumed, more B₄C is deposited. This effect could have negative practical implications. If the additional B₄C preferentially deposits in the interparticle necks, it could impede later densification by reducing the surface energy driving force. This spatial distribution of deposited B₄C might lead to density gradients in the final sintered body. This mechanism is similar to a mechanism discussed by Lee and Speyer (2003) in which evaporation/condensation at higher temperature impedes densification.¹

Figures 13(a-f) show how the final distribution of C varies with the other key model parameters. The only effect of pore size, r, and tortuosity, q in the model is to change the permeability and hence the gas fluxes. Since we have assumed local thermodynamic equilibrium, the amount of C consumed in a given interval of time is proportional to the flux of the B_xO_y gases, which are in turn related to the flux of CO (since their relative pressures are constrained by thermodynamics). The time for complete $B_2O_3(c)$ removal is inversely proportional to the flux of CO, so a lower flux means a lower rate of C consumption but a proportionately longer time available for consumption. The total amount of C consumed is proportional to flux times time, thus the overall effect cancels resulting in a residual C distribution that is insensitive to these parameters. Similar arguments hold for the variation of residual carbon with specimen thickness, but only

when the results are graphed versus position normalized to the specimen thickness (Figure 13(f)). This is perhaps surprising given the common experience that variations through the specimen thickness for a variety of phenomena tend to be exaggerated for thicker specimens.

The C distribution does depend on the porosity, ε , (Figure 13(b)) but this is because, in addition to its influence on the gas flux, it also controls the amount of B₂O₃(c) that needs to be removed. In this case the difference in C concentration between the center and the surface is the same. The C distribution also depends on the mole fraction of B₂O₃ $(X_{B_{2}O_{3}})$ (Figure 13(c)) for the same reason.

The difference in shape of the residual C profile, as characterized by the height y (figure 13(c)) is simply a multiple of $X_{B_2O_3}$. For example, the difference between $X_{B_2O_3} = 0.275\%$ and $X_{B_2O_3} = 3.3\%$ is 12. Thus, the curvature represented by $y_3 = 12y_1$, similarly, $y_3 = 3y_2$.

IV. Conclusions

The elimination of B_2O_3 from B_4C compacts is known to be important since the presence of B_2O_3 during sintering can degrade the properties of the final material.¹⁻³ One method of removing B_2O_3 is to add carbon which converts it to B_4C and CO gas during heating to the sintering temperature. However, sufficient time must be given for the CO to diffuse out of the compact in order to avoid the CO pressure damaging the specimen at higher temperature. A computational model describing the diffusion of multiple gas species through a porous compact was utilized to predict the isothermal holding time needed for complete B_2O_3 removal during the pre-sintering purge phase. The dependence of holding time on various parameters has been studied.

The quantities of solid and gas species were monitored as a function of time and position across the sample thickness. It was found that a reaction front travels from the surface towards the center of the sample with B_2O_3 exhaustion taking place at the

reaction front. The time required for complete removal of B_2O_3 therefore corresponds to the time taken for the reaction front to reach the center of the specimen.

A semi empirical equation has been developed to describe how the holding time varies with all the influencing parameters. This equation was found to represent the model well even when several parameters are varied simultaneously.

The need to minimize gradients in the final distribution of carbon, as well as of B_4C , is justified due to the role these parameters have in final density and coarsening. It was found that high temperature as well as high initial B_2O_3 content leads to larger gradient in the carbon and B_4C composition. The results are qualitatively consistent with previously published experimental observations.

V. References

- ¹H. Lee and R. F. Speyer, "Pressureless Sintering of Boron Carbide," *J. Am. Ceram. Soc.*, **86** [9] 1468-1473 (2003).
- ²H. Lee and R. F. Speyer, "Sintering of Boron Carbide Heat-Treated with Hydrogen," *J. Am. Ceram. Soc.*, **85** [8] 2131-2133 (2002).
- ³N. Cho, K. G. Silver, Y. Berta, R. F. Speyer, N. Vanier, C. H. Hung, "Densification of carbon-rich boron carbide nanopowder compacts," *J. Mater. Res.*, **22** [5] 1354-1359 (2007).
- ⁴W. J. Clegg, "Role of Carbon in the Sintering of Boron-Doped Silicon Carbide," *J. Am. Ceram. Soc.*, **83** [5] 1039-1043 (2000).
- ⁵S. Prochazka and R. M. Scanlan, "Effect of Boron and Carbon on Sintering of SiC," J. *Am. Ceram. Soc.*, **58** [1] 72 (1975).
- ⁶M. Raczka, G. Gorney, L. Stobierski, K. Rozniatowski, "Effect of Carbon Content on the Microstructure and Properties of Silicon Carbide-Based Sinters," *Mater. Charact.*, 46, 245-249 (2001).
- ⁷L. Stobierski and A. Gubernal, "Sintering of Silicon Carbide: I. Effect of Carbon," *Ceram. Int.*, **29**, 287-292 (2003).
- ⁸NIST Chemistry WebBook, National Institute of Standards and Technology. Gaithersburg MD 20899, <u>http://webbook.nist.gov/</u> 2005.
- ⁹M. W. Chase and others, JANAF Thermochemical Tables. 3rd ed.; American Institute of Physics, New York, 1986. Vol. 1-2.
- ¹⁰TAPP 2.2, version 2.2; E.S. Microware Inc.: 2234 Wade Court, Hamilton, OH 45013, <u>http://www.esm-software.com/</u> 1992.
- ¹¹A. Kaza, M. J. Matthewson, D. Niesz, R. L. Haber, M. A. Rossi, "A Model of Gas Phase Transport During the Initial Stages of Sintering of Silicon Carbide," *J. Am. Ceram. Soc.*, *in review.*, (2009).
- ¹²E. A. Mason and A. P. Malinauskas, Gas Transport in Porous Media; the Dusty-Gas Model. Elsevier, Amsterdam, Netherlands, 1983.
- ¹³D. Emin, "Structure and single-phase regime of boron carbides," *Phys. Rev. B*, **38** [9] 6041-6055 (1988).
- ¹⁴L. Levin, N. Frage, M. P. Dariel, "A novel approach for the preparation of B₄C-based cermets," *Int. J. Refract. Met. Hard Mater.*, **18** [2-3] 131-135 (2000).

¹⁵S. L. Dole, S. Prochazka, R. H. Doremus, "Microstructural Coarsening During Sintering of Boron Carbide," J. Am. Ceram. Soc., 72 [6] 958-966 (1989).

VI. Figure Captions

Fig. 1: Gas pressures as a function of temperature for several species in equilibrium with solid B_4C , C and liquid (T > 723 K) B_2O_3 .

Fig. 2: (a) Partial pressure of CO as a function of position at several times and (b) as a function of time at several positions beneath the specimen surface.

Fig. 3: Partial pressure profiles of the gaseous species (a) B_2O_2 , (b) $B_2O_3(g)$ and (c) BO as a function of position across the sample thickness at various times.

Fig. 4: (a) The profiles of $B_2O_3(c)$ and (b) C as a function of position at various times during the temperature hold.

Fig. 5: Holding time for complete $B_2O_3(c)$ removal as function of $(1-\varepsilon)/\varepsilon$.

Fig. 6: The holding time required for the removal of $B_2O_3(c)$, as a function of pore radius on a reciprocal scale.

Fig. 7: The holding time required for the removal of $B_2O_3(c)$, as a function of pore tortuosity.

Fig. 8: The holding time required for the removal of $B_2O_3(c)$, as a function of the square of the specimen thickness.

Fig. 9: Holding time as a function of initial $B_2O_3(c)$ content in B_4C powder.

Fig. 10: Holding time required for the removal of $B_2O_3(c)$, as a function of temperature on a semi-log scale.

Fig. 11: (a) Residual C concentration profile after complete $B_2O_3(c)$ depletion from specimen. (b) Change in number of moles of C normalized to the initial number of moles of $B_2O_3(c)$.

Fig. 12: (a) Residual C concentration profile at t_c , as a function of temperature (*T*). (b) Change in B₄C concentration profile at t_c , as a function of temperature (*T*).

Fig. 13: Residual C concentration profile at t_c as a function of (a) pore radius r, (b) porosity ε , (c) $X_{B_2O_3}$, (d) tortuosity q, and (e) specimen thickness, l. (f) shows the data from (e) re-graphed as a function of position normalized to the overall specimen thickness.

Tables

specimen thickness (l)	10 mm
pore radius (r)	70 nm
porosity (ε)	0.4
tortuosity (q)	5
mole fraction of carbon $(X_{\rm C})$	23.0%
mole fraction of B_2O_3 ($X_{B_2O_3}$)	1.1%
temperature (T)	1640 K
external environment	vacuum

Table I: Parameter values used for the reference simulation.¹⁵

Table II: Linearized equations relating time for complete $B_2O_3(c)$ removal, t_c , to each parameter. t_c ; takes a value of $t_0 = 0.267$ hr for the standard conditions listed in Table I.

Parameter	Expression for t_c	b_i	
porosity (ϵ)	$t_0(1+b_{\varepsilon}\Delta[(1-\varepsilon)/\varepsilon])$	0.668	
pore radius (r)	$t_0(1+b_r\Delta[1/r])$	69.8 nm	
tortuosity (q)	$t_0(1+b_q\Delta[q])$	0.200	
specimen thickness (<i>l</i>)	$t_0(1+b_l\Delta[l^2])$	0.010 mm^{-2}	
mole fraction (X)	$t_0(1+b_{X_{B_2O_3}}\Delta [X_{B_2O_3}])$	0.899	
temperature (T)	$t_0 \exp\bigl(-b_T \Delta[T]\bigr)$	0.011 K^{-1}	

Parameter	Reference value	$1.25 t_0$	$2.0t_0$	$5.0t_0$
specimen thickness (l)	10 mm	11.2 mm	14.1 mm	22.4 mm
pore radius (r)	70 nm	56.0 nm	34.9 nm	13.9 nm
porosity (ε)	0.4	0.348	0.250	0.118
tortuosity (q)	5	6.25	10	25
mole fraction of $B_2O_3(X_{B_2O_3})$	1.1%	1.29%	2.12%	5.46%
Temperature (T)	1640 K	1620 K	1577 K	1494 K
t_c predicted by model	0.267 hr	0.983 hr	18.44 hr	5902 hr
t_c from Eqn. (20)	0.267 hr	1.018 hr	17.09 hr	4172 hr

 Table III: Semi-empirical equation sensitivity test.

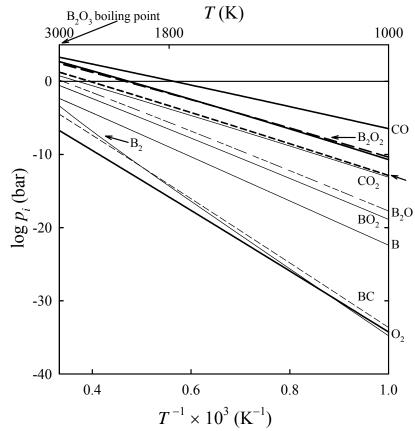
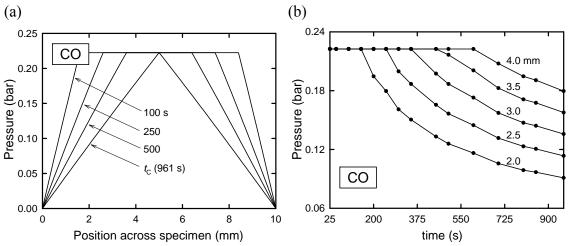
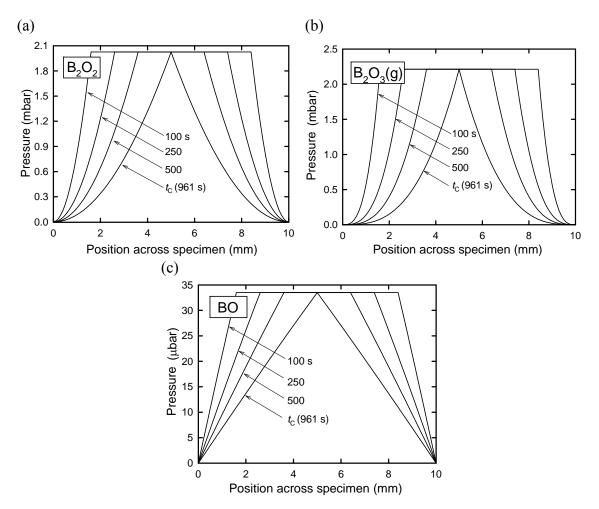




Fig. 1: Gas pressures as a function of temperature for several species in equilibrium with solid B_4C , C and liquid (T > 723 K) B_2O_3 .

Fig. 2: (a) Partial pressure of CO as a function of position at several times and (b) as a function of time at several positions beneath the specimen surface.

Fig. 3: Partial pressure profiles of the gaseous species (a) B_2O_2 , (b) $B_2O_3(g)$ and (c) BO as a function of position across the sample thickness at various times.

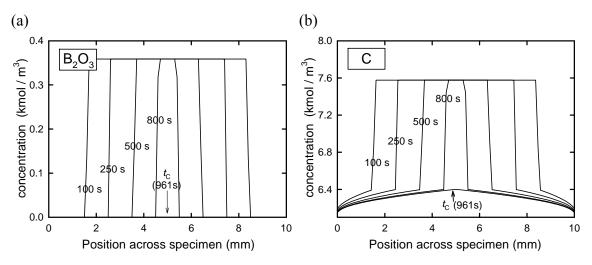


Fig. 4 (a) The profile of $B_2O_3(c)$ and (b) C as a function of position at various times during the temperature hold.

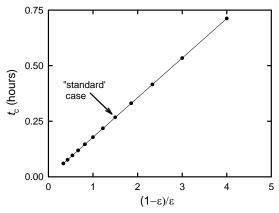
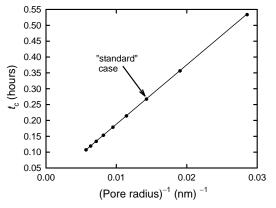



Fig. 5: Holding time for complete $B_2O_3(c)$ removal as function of $(1-\epsilon)/\epsilon$.

Fig. 6: The holding time required for the removal of $B_2O_3(c)$, as a function of pore radius on a reciprocal scale.

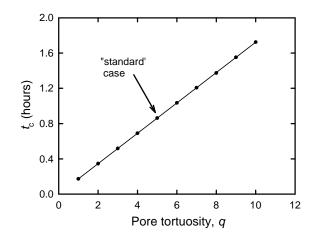
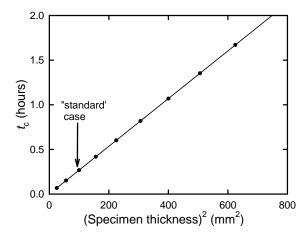



Fig. 7: The holding time required for the removal of $B_2O_3(c)$, as a function of pore tortuosity.

Fig. 8: The holding time required for the removal of $B_2O_3(c)$, as a function of the square of the specimen thickness

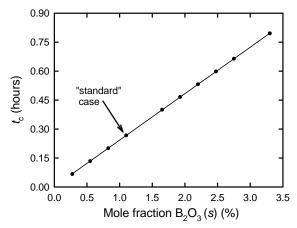


Fig. 9: Holding time as a function of initial $B_2O_3(c)$ content in B_4C powder.

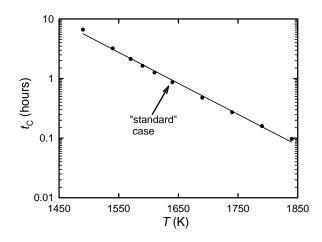


Fig. 10: Holding time required for the removal of $B_2O_3(c)$, as a function of temperature.

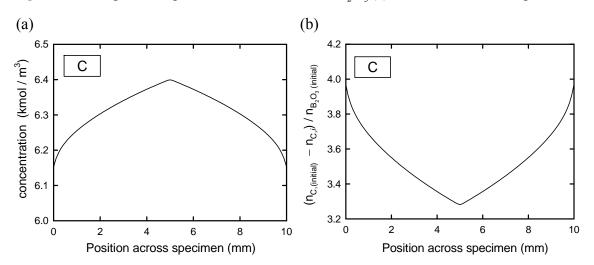
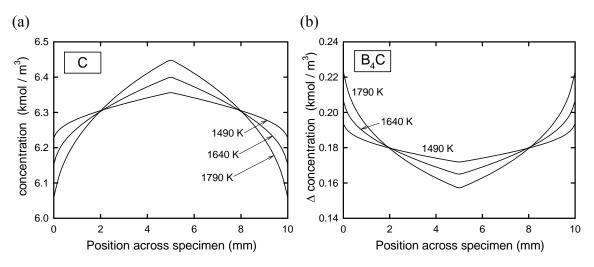
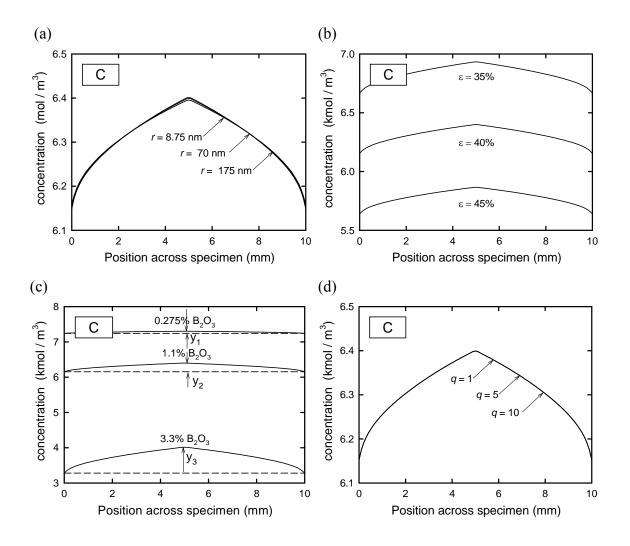
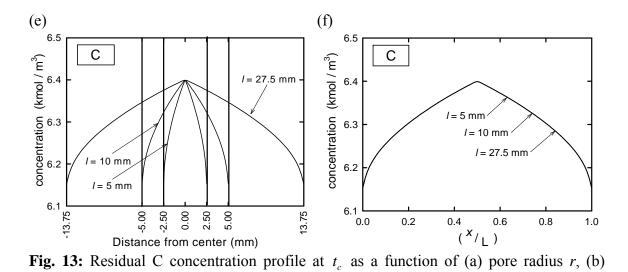





Fig. 11: (a) Residual C concentration profile after complete $B_2O_3(c)$ depletion from specimen. (b) Change in number of moles of C normalized to the initial number of moles of $B_2O_3(c)$.

Fig. 12: (a) Residual C concentration profile at t_c , as a function of temperature (*T*). (b) Change in B₄C concentration profile at t_c , as a function of temperature (*T*).

porosity ε , (c) $X_{B_2O_3}$, (d) tortuosity q, and (e) specimen thickness, l. (f) shows the data from (e) re-graphed as a function of position normalized to the overall specimen thickness.