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ABSTRACT   
 
 There have been numerous studies of the fatigue and strength behavior of fused silica optical 
fibers.  However, no coherent model has emerged that self-consistently describes the 
simultaneous effects of stress, temperature and activity of the corroding species (e.g. water).  A 
power law degradation kinetics model (relating the crack growth rate to the applied stress 
intensity factor, KI) is widely used although various exponential forms based on chemical rate 
theory have also been proposed.  The dependence of fatigue on parameters such as humidity, pH 
and temperature, has usually been treated in an empirical manner.  Sometimes it is even ignored - 
for example, the service environment is often assumed to be the same as the proof test 
environment when making lifetime predictions, thus avoiding the need for understanding the 
humidity dependence; this assumption is often unjustified.  This paper reviews the dependence of 
fatigue on environmental factors and highlights some of the inconsistencies in published data.  It 
is then attempted to present a coherent kinetics model that simultaneously accounts for stress 
temperature, humidity, etc.  Several possible forms of the model are compared to a range of 
experimental data of several different types.  The comparison is made using fitting techniques 
that account for correlation between fit parameters.  It is found that a simple exponential form of 
the degradation kinetics model gives the best overall description of the temperature, humidity 
and pH effects on static and dynamic fatigue.  It should be noted that the exponential form 
predicts shorter lifetimes than the ubiquitous power law model.  Therefore, under some 
circumstances, the predictions of “worst case” models based on power law kinetics are unduly 
optimistic.   

INTRODUCTION   
 
 The mechanical behavior of fused silica optical fiber exhibits two regimes - one where the 
time to failure depends sensitively on the applied stress (stress corrosion cracking) and a second 
in which strength degradation can occur even in the absence of an applied stress.  This latter 
regime, which tends to occur in the most aggressive environments, is not the subject of this 
paper.  Here we are concerned with the first regime, and in particular the functional form for how 
the degradation depends on the applied stress.   

Subcritical Crack Growth Model   
 
 The reliability of silica optical fiber under stress is usually described by the subcritical crack 
growth model.  It is assumed that the strength is controlled by defects which are invariably 
modeled as sharp cracks that locally amplify the remotely applied stress, σa, as described by the 
well-known Griffith equation: 

 cYK aσ=I , (1) 
 
where KI is the stress intensity factor (a measure of the intensity of the stress field near the crack 
tip), c is the crack length and Y is a crack shape parameter of order unity.   
 Slow crack growth occurs when environmental moisture attacks the strained bonds at the 
crack tip and an empirical power law relationship between the growth rate and the local stress (as 
quantified by KI) is usually assumed:   
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 nKA
dt
dc

I= ,  (2) 

 
where A and n are constants to be found for any particular glass and environment.  This form is 
assumed principally for mathematical simplicity.  For any given loading mode (variation of σa 
with time) equations 1 and 2 may be integrated to obtain the time to failure as a function of the 
loading.  The resulting equations can be fitted to experimental data to obtain values for the 
fatigue parameters, A and n, and then used to make predictions of reliability under service 
conditions.  However, such predictions invariably involve extrapolation from experimental data 
and so can only be trusted if the correct form of the relevant equations are known.  It turns out 
that because n is typically ∼20 for fused silica, the fatigue equations are very much more 
sensitive to the form of the kinetics function, equation 2, than to Griffith’s equation, equation 1.  
As already stated, the power law form is usually chosen for its mathematical convenience but is 
not based on any physical model.  The purpose of this paper is to discuss other possible forms for 
the kinetics function and to compare these with measurements.  Reaction rate theory is applied to 
slow crack growth, and it is shown that the dependence on stress, equation 2, and the dependence 
on the environment (which influences A and n) are inextricably linked and should not be treated 
separately.  The intent, therefore, is to construct a chemical kinetics model that simultaneously 
and self-consistently describes the effects of stress and environment (temperature, humidity, pH, 
etc.).   

Kinetics Functions 
 
 The power law function of equation 2 is better written in the form: 
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to give the pre-exponent, A1, sensible units.  For convenience the stress intensity factor is 
normalized to the critical value; κ is the normalized value.  Equation 3 will be designated model 
1.  Other forms of the kinetics function have been proposed.  Many are empirical but some 
describe the crack growth as a chemical reaction between strained siloxane bonds and water.  In 
the earliest work on fatigue Wiederhorn1 proposed an exponential form for the kinetics function 
which can be expressed as:   

 ( )κ= 22 exp nA
dt
dc . (4) 

 
Wiederhorn derives this by assuming that the tensile stress at the crack tip, which causes a 
hydrostatic tension, can be treated like a negative pressure.  This pressure then reduces the free 
energy of activation thus increasing the reaction rate.  Wiederhorn also incorporates a free 
energy term for the excess energy at the crack tip due to its curvature; however, this term 
becomes unimportant if the curvature remains constant as the crack advances.  His model fitted 
experimental data for slow crack growth quite well, but this is not surprising given the sensitivity 
to KI and the scatter in the data.   
 Wiederhorn’s derivation is not rigorous since the stress influences the kinetics through a 
tensile pressure.  Firstly, the stress field at the crack tip is not purely hydrostatic.  Secondly, 
pressure affects free energy through the pdV work term in the first law of thermodynamics - the 
pressure is the uniform pressure applied at the boundaries of the thermodynamic system, while 
the tensile pressure associated with the crack is local to the crack tip.  A more rigorous approach 
due to Lawn2 considers changes in the stored elastic energy associated with the crack as it 
extends and effectively substitutes a G dc work term in the first law where G is the strain energy 
released rate.   
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 Lawn permits a reverse, crack-healing reaction with the same rate constants.  This suggests 
the existence of a fatigue limit at some finite stress when the forward and reverse reaction rates 
balance.  However, since there is no clear evidence for a fatigue limit in fused silica optical fiber 
either there is no fatigue limit or, more likely, all data are sufficiently far from that limit.  Under 
these circumstances the crack healing reaction can be ignored and Lawn’s model reduces to the 
form which we shall designate model 3:   

 ( )2
33 exp κ= nA

dt
dc . (5) 

 
 Comparing models 2 and 3, the stress effectively reduces the activation energy linearly with 
KI in model 2 as an activation volume term.  In model 3 the activation energy reduces 
quadratically with KI with the elastic strain energy directly reducing the free energy via the 
chemical potential.2  
 At this point one can stand back and treat the problem phenomenologically.  So far the 
problem is described in terms of subcritical crack growth.  However, as already discussed above, 
the form of the kinetics function dominates over the Griffith equation.  We may therefore treat 
the trends of the final fatigue equations as describing any stress-assisted reaction between silica 
and water.  For example, Tomozawa3 has suggested that stress assisted diffusion of water into 
glass may be the underlying mechanism for fatigue.  The analysis presented here can therefore be 
applied equally well to that model.  While the results will be interpreted in terms of crack 
growth, the trends with stress, temperature, humidity etc., are not bound to the crack assumption.  
This is important because high strength optical fiber does not contain simple sharp cracks, but we 
can still use the results of such a model to describe trends. 

Is the Form of the Kinetics Function Important?   
 
 Predicted lifetimes can be sensitive to the form of the kinetics function.4,5  It is only 
important if making reliability predictions involves extrapolation rather than interpolation.  In 
principle, reliability predictions can be made in two ways.  The first involves fitting to short-term 
laboratory data for short lengths of fiber (i.e. high strength “pristine” material) and then 
extrapolating to longer times and lower intrinsic strength.  The second involves studying the 
behavior of deliberately weakened fiber (to simulate flaws just surviving the proof test) and then 
extrapolating to longer times.  This second approach is simple extrapolation from data taken on 
the time scale of hours to behavior in the lifetime of many years.  Clearly, any such prediction 
will be highly sensitive to the kinetics function. 
 The first, more commonly used approach involves extrapolation over two variables, namely 
time and starting strength.  Griffioen6 suggests that these extrapolations are effectively in 
opposite directions - the crack velocity is similar for both small cracks on a short time scale and 
large cracks on a long time scale.  Therefore the effects cancel leaving predictions insensitive to 
the kinetics function.  Bubel and Matthewson5 verify this trend.  However, the cancellation is not 
complete.  For example, the three kinetics functions have been fitted to dynamic fatigue of fiber 
in pH 7 buffer measured in two-point bending at loading rates of 25, 2.5, 0.25 and 0.025 %/min 
as specified in a standard test procedure.7  Figure 1(a) shows the fits extrapolated to a 25 year 
lifetime assuming the starting (inert) strength of the fiber is 12 GPa.  The permitted service 
stresses vary by over an order of magnitude for the three models, the power law, model 1, giving 
the least conservative estimate.  Figure 1(b) now makes the same extrapolation (i.e. assumes the 
same fatigue parameters) but for an initial strength of 0.7 GPa, i.e. that of a flaw that just passes 
a 0.7 GPa proof test.  Now there is less variability between the models, but there is still a 
substantial difference between the allowed service stress predictions.  Clearly, the double 
extrapolation does not completely cancel and it is again necessary to know the correct form of 
the kinetics function.   
 There is a second reason for needing to know the correct kinetics model that does not involve 
extrapolation: it is needed to interpret certain kinds of experimental data.  For example, Duncan 
et al.8 present strength data as a function of relative humidity.  For humidity in the range 15 to 
100% the log-log graph of strength versus humidity has a slope of −0.0928.  If the power law is 
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assumed then this straight line should have a slope of m/(n − 1) where m is the reaction order.  
Given n = 23 for these data, m = 2.04 so the reaction appears roughly second order in humidity.  
An unanswered question is whether this result depends on the assumed form of the kinetics 
function.   

Effect of Coatings   
  
 It is reasonable to suppose that the polymer buffer coating applied to the fiber might have a 
substantial impact on the reaction kinetics.  This is certainly the case for the corrosive regime in 
which the coating can have a dramatic effect on the onset of the zero-stress aging degradation.9  
In contrast, it appears that many coatings do not perturb the crack growth kinetics provided 
sufficient time is allowed for equilibration with the test environment.10-12  These results are 
persuasive because they directly compare coated and bare fiber behavior.  Equilibration times 
vary from hours for a simple humid air environment13 to weeks for more complex aqueous 
environments, such as pH buffers.14  While coating effects have sometimes been claimed, it is 
not clear that such systems have been properly equilibrated with the test environment.   

CHEMICAL KINETICS THEORY   
 
 We will now develop a phenomenological model based on absolute rate theory that can 
incorporate any of the three kinetics functions described above.  The net crack growth rate (or 
more generically, the degradation rate) can be considered as the difference of both forward 
(extending) and reverse (healing) reactions that depend on the chemical activity of the reactants 
and products, respectively:   

 )()( productsreactants afkafk
dt
dc

−+ −= . (6) 

  
The activities of the various species will depend on their concentrations.  Assuming we are 
operating far from a fatigue limit, we need only consider the forward reaction with a single rate 
constant, k:   

 ( )]reactants[fk
dt
dc

= . (7) 
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Figure 1.  Fit to dynamic fatigue data taken under standard loading rates7 extrapolated to long 
lifetimes under a static stress.  Results are calculated assuming (a) a pristine inert strength of 12 GPa 
and (b) extrapolated to an inert strength of 0.7 GPa.  Bands represent a 95% confidence interval.
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Transition state theory15 can be adapted to give the form of k:   
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where ∆G* is the free energy of the activated complex, a is the distance the crack advances when 
one bond is broken and ν is a vibrational frequency.  kB, h and R are the Boltzmann, Planck and 
gas constants.  Splitting ∆G* into enthalpy and entropy contributions and substitution into 7 
gives: 
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Effect of Environment 
 
 The environmental dependence of the growth rate, f ([reactants]), may itself be thermally 
activated.  For example, the saturated vapor pressure of water and the hydroxyl concentration in 
aqueous solutions are both thermally activated and roughly follow Arrhenius behavior.  If the 
apparent reaction order for the reactants is m, we may write:   
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where •∆G  is the activation free energy of the reactant concentration.  Substitution into 9 gives: 
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Effect of Stress 
 
 In the models of Wiederhorn1 and Lawn2 the stress at the crack tip is assumed to reduce the 
activation energy (enthalpy).  In general, therefore, we may write:   

 )(*
0

* κ−∆=∆ HfHH , (12) 
 
where *

0H∆  is the activation energy under zero stress and fH(κ) is some as yet unspecified 
function.   
 Scanlan16 suggests that stress could also change the activation entropy.  This is reasonable 
since the stress might, for example, change the number of vibrational states available to the 
system.  He found that this approach is a better description of data17 for the temperature 
dependence of growth velocity of macroscopic cracks.  Analogous to equation 12, we may write:   

 )(*
0

* κ−∆=∆ SfSS . (13) 
 
Equation 11 now becomes:   
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For simplicity we will assume that fH and fS take the same functional form though with different 
constants:   

 )()( κ=κ gbf HH , (15a) 

 )()( κ=κ gbf SS , (15b) 
 
giving: 
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Recognizing that model 1 may be rewritten as: 

 ( )κ=κ= lnexp 111
1 nAA

dt
dc n , (17) 

  
the particular forms of g(κ) that correspond to the three kinetics models may be deduced:  

 Model 1 )ln()(1 κ=κg , 

 Model 2 κ=κ)(2g , (18) 

 Model 3 2
3 )( κ=κg . 

 
If, as is usual, we assume the pre-exponents, Ai (i = 1…3), are Arrhenius with apparent 
activation energy, Ea: 
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by comparing the models with 17 and 19 we find:   
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Examination of equations 20 to 22 yields the following conclusions:   
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1. Both the pre-exponents, Ai, and the apparent activation energy depend on the environment 
through m and •∆G .  They are therefore not universal constants for a given material.   

 
2. The ni do not depend on the environment but do change linearly with reciprocal temperature.  

If the entropy is important then ni vs. 1/T should have a finite intercept. 

DETERMINATION OF THE KINETICS FUNCTION 
 
 The kinetics function describes how the stress affects the rate of strength degradation.  The 
obvious way to determine the correct functional form is to compare theory with experimental 
data for the stress dependence of strength and fatigue.  However, the above analysis shows that 
environment effects can also be used to deduce the kinetics function.  For example, n for any 
model should be a constant at a constant temperature; if it varies with the environment (e.g. 
humidity or pH) then that model is inappropriate.   

Stress Dependence   
 
 The stress dependence can be determined in several ways.  Observation of the v-K (dc/dt vs. 
KI) behavior for macroscopic cracks is the most direct.  Most such data are not sufficiently 
accurate and reproducible to distinguish between the three models discussed here.  However, 
Helfinstine and Gulati18 (data shown in reference 19) made particularly extensive and careful 
measurements and found best agreement with the simple exponential, model 2.  Muraoka and 
Abé20 found similar results for both annealed and unannealed indentation cracks.   
 Alternatively, the stress dependence can be found indirectly by either static or dynamic 
fatigue.  In this case we need to distinguish between the behavior of weak and “pristine” fiber.  
Data for deliberately weakened fiber usually exhibit too much scatter to identify the kinetics 
function.  In a particularly extensive study of abraded fiber, Glaesemann21 shows high-speed 
dynamic fatigue data that show upwards curvature on a log-log plot hence showing a closer fit to 
the power law than the exponential forms.  
 The situation is clearer for pristine fiber behavior because the small scatter and ease of 
testing this material can readily provide data with the required precision.  A review of the 
literature shows that most data for pristine fiber give a good fit to the power law, model 1 
(provided the corrosive “knee” region is avoided).  For example, power law behavior is observed 
for high speed dynamic fatigue in air22 and for long duration static fatigue in 80°C water23 
provided the fatigue knee is avoided.  Particularly careful experiments designed to test the power 
law gave a best fit to it in both static and dynamic fatigue of both coated and bare fiber in both 
liquid and vapor.24  This shows that the power law dependence is not a coating artifact since it is 
observed for bare silica.  While model 1 gives the best fit, the simple exponential, model 2, gives 
a reasonable fit.  Model 3 generally gives a poor fit to all data cited above.   

Environment Dependence   
 
 The derivation above shows that the fatigue parameters should depend on the test 
environment in a particular way (equations 20 to 22).  We have recently conducted careful 
experiments to measure the fatigue parameters as a function of the test environment in order to 
test the various kinetics functions.  An important aspect of this work is that both coated and bare 
fiber have been considered in order to explicitly account for any coating effects.  In general, 
coated fiber behaves in the same way as bare provided sufficient time is allowed for 
equilibration.   

Humidity   
  
 Armstrong et al.11 have measured the fatigue parameters as a function of humidity (20-95%) 
of fibers both bare and coated with a range of coatings including acrylate, silicone and 
polyimide.  For the power law, it is found that almost all the humidity dependence is in n1, and 
little in A1; i.e. the opposite of what is expected.  This means that the “B” parameter is roughly 
constant, contrary to common assumptions.  In contrast, almost all the humidity dependence is in 
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A2 for model 2 and n2 is roughly constant as the model assumes.  For model 3, both n3 and A3 
show humidity dependence; the agreement with this model is not as good as model 2 but better 
than model 1.   
 Armstrong et al.11 found an effective reaction order of approximately 2 for humidity, 
confirming earlier work.8  In contrast to the earlier work, they showed this result is also valid for 
bare fiber and is independent of the kinetics function provided the data are analyzed correctly: 
the reaction order should be calculated assuming n is a constant with humidity, even though it is 
not for models 1 and 3.   

pH 
 
Taylor and Matthewson10 have measured the fatigue parameters in a range of pH buffers.  The 
results are similar to those for humidity: model 2 gives the best fit to the data (i.e. n2 shows the 
least dependence on pH) while models 1 and 3 show significant dependence of n on pH.   

Temperature   
  
 Shiue and Matthewson25 have measured the static fatigue parameters as a function of 
temperature in both distilled water and pH 7 buffer environments.  The buffer maintains the pH 
at roughly 7 in the temperature range 25-90°C, while the pH of pure water decreases with 
temperature due to the temperature dependence of the dissociation constant of water, Kw; pH 7 is 
basic compared to pure water above room temperature.  As a result Shiue predicts that the 
apparent activation energy for static fatigue in water should be higher than in pH 7 buffer and 
verifies this prediction by experiment.  This result explains for the first time the well-known 
observation that failure occurs faster in pH 7 buffer than in water at elevated temperatures; it can 
be explained by a simple pH effect rather than invoking some unknown interaction with the ions 
in the buffer.  In other work Shiue26 shows that entropy effects are important. 

DISCUSSION   
  
 Summarizing these results, we observe that the stress dependence of the fatigue of high 
strength fiber generally gives a good fit to the unphysical power law kinetics function.  In 
contrast, the environmental results are best described by the exponential form of model 2.  
Overall, model 2 is the most consistent description of both stress and environment.  The most 
physically meaningful model, model 3, gives overall the worst description of experimental data.   
 The discrepancy between the stress and environment data will now be discussed.  The 
situation can be understood if the underlying behavior is exponential but some factor perturbs the 
stress dependence in such a way that 
the exponential appears as a power 
law.  Several mechanisms can be 
proposed.   
 Figure 2 shows a v-K diagram of 
crack growth velocity, v, as a function 
of the normalized stress intensity, κ.  
The diagram shows how the three 
kinetics functions would appear on a 
semi-log plot.  If the underlying 
behavior were exponential, then the 
straight line shown in the diagram 
would have to have concave 
downwards curvature in order to 
appear like a power law.  In other 
words, the crack growth or 
degradation rate would have to be 
slower than expected at low applied 
stress.  One can postulate several 
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Figure 2.  Schematic on a semi-log scale of the expected v-κ 
behavior for the three kinetics functions. 
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mechanisms that could have such an effect.   
 The analysis presented here ignores the effect of the reverse reaction in which silanol groups 
at the crack tip condense to eliminate water and reform a siloxane bond, thus healing the crack.  
Healing will be more significant at low applied stress.  Lawn’s model2 does account for a reverse 
reaction which leads to a threshold KI.  However, because v is so sensitive to KI (n is so large), 
the reverse reaction only has any significant effect close to the threshold.  The dashed line in 
figure 2 shows how the reverse reaction influences model 3; it has negligible effect away from 
the threshold and so can not explain the overall reshaping towards the power law.   
 Another possibility is that in the high strength material the flaws are of atomic dimension.  
Growth of the flaws means breaking discreet bonds and perturbations from continuous growth 
could be large.  Scanlan27 presents a bond failure model in which the crack is modeled as a 
ladder of bonds (figure 3).  The effective crack growth rate depends on the bond length, a, and 
the mean time to failure of the bond, t .  He assumes t  is Arrhenius with model 2 stress 
dependence: 

 ( )Iexp Kba
t
a

dt
dc

∝= . (23) 

  
Scanlan shows the time it takes to break the first bond 
is a significant part of the time to failure.  This is a 
bigger effect at short times/high stress to failure, thus 
providing a systematic perturbation with stress 
potentially turning the exponential into an apparent 
power law.  Figure 4 shows the results of simulations 
of static fatigue using Scanlan’s approach.  The 
figure shows the results for both the discreet (solid 
line) and the continuous (circles) growth of the crack 
using identical fatigue parameters for both.  The 
results coincide except at the very shortest times.  
Therefore the discreet nature 
of the bond rupture has 
negligible effect on the overall 
failure kinetics and can not 
explain the power law.   
 Also shown in figure 4 is 
the time it takes the first bond 
to break in the discreet model 
(dashed line).  At short failure 
times the first bond can 
account for half of the time to 
failure and still accounts for 
10% at long times.  This 
illustrates a difficulty with our 
understanding of the behavior 
of high strength fiber.  
Scanlan’s bond rupture model 
considers the mean time to 
failure for each bond but any 
given bond will have a 
constant probability of failure 
per unit time, p (which 
depends on stress) giving an 
exponential distribution of 
failure times: 
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Figure 3.  Schematic of the bond failure 
model due to Scanlan.27 
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Figure 4.  Predicted static fatigue behavior using Scanlan’s bond 
failure model27 (solid line) and the continuous growth function, 
equation 4 (circles).  Also shown is the mean time to failure of the 
first bond in Scanlan’s model (dashed line). 
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p

tF −= exp1)( . (24) 

 
The standard deviation and mean of this distribution have the same value, so that their ratio, the 
dispersion, is 100%.  The dispersion in the total time to failure will be less than this since it 
involves averaging over several bonds.  In other work Scanlan28 shows that the Weibull modulus 
(an inverse measure of the dispersion) can be related to the number of bonds broken before 
catastrophic failure ensues.  Therefore we expect more scatter in the time to failure in the 
stronger material since fewer bonds are averaged before catastrophic failure occurs.  This is not 
observed in experiment; the scatter in the strength of pristine fiber is extremely small.29  While 
the scatter in time to failure is larger, most of it can be understood from the experimental 
variability in the applied stress.30  
 Other possibilities that might result in apparent power law kinetics could involve the 
stochastic nature of the glass structure.  For example, a semi-circular surface flaw will have 
fewer crack tip bonds than a larger flaw.  Since the bond strength is statistically scattered, this 
means the weakest bond at the tip of a small flaw is stronger than the weakest for a large flaw, 
thus providing a systematic perturbation with stress.  However, these and related ideas remain 
topics for future research.   

CONCLUSIONS 
 
 In this paper we present a unified chemical kinetics model which can incorporate any of the 
commonly used crack growth kinetics models as a single kinetics function.  We show that the 
effects of stress and environment are not separable and make specific predictions for how the 
fatigue parameters should vary with environment.  Many of these predictions have been verified 
by experiment.  While the model is derived assuming the presence of sharp stress-free cracks, 
this assumption is not valid for defects in the strength range of practical interest (from the proof 
stress, ∼0.7 GPa, up to the inert strength, ∼12 GPa).  However, the results are not sensitive to this 
assumption and the model is therefore still useful as a phenomenological description of a 
thermally activated stress-assisted degradation process.   
 Reliability predictions are sensitive to the assumed form of the kinetics function.  
Comparisons with experimental data do not provide a unique answer for the form; except for 
macroscopic crack growth data, the stress dependence is best described by the unphysical power 
law while environmental dependence is best described by a simple exponential. The exponential 
provides the best overall description of both effects.  It must be noted that the exponential form 
gives shorter times to failure than the widely used power law form; this has obvious practical 
implications.   
 These results can be rationalized if it is assumed that the underlying kinetics function is the 
exponential, as evidenced by the environmental dependence and the behavior of macroscopic 
cracks, but that something peculiar to very high strength silica glass perturbs the stress 
dependence so that it appears to be a power law.  While we propose several possible causes of 
this behavior involving the discreet and random nature of the glass, some are disproved and the 
rest are merely speculative at this stage.   
 Most of the data discussed here are for “pristine” silica fibers.  In practice one is more 
interested in weaker flaws with strengths similar to the proof stress.  Such flaws are difficult to 
study, especially because of the large scatter in their behavior.  However it would be interesting 
to accurately determine the kinetics of their behavior though residual stresses can perturb their 
behavior.31 
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