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1. INTRODUCTION
The practical strength of glass, and of optical fibers in particular,
is controlled by flaws, usually on the surface. It is well estab-
lished, furthermore, that such flaws can grow in time so that an
initially intact silica optical fiber may undergo delayed fracture
from the combined influence of low stress levels and the chemical
environment. When optical fibers are deployed in high-reliability
applications, a model of the crack growth kinetics is used to
predict, from accelerated laboratory experiments, the conditions
under which delayed failure will occur.

The current practice of modeling crack growth is usually
based on an assumed power law dependence of crack velocity
on stress intensity. Integration of this function leads to an expres-
sion relating failure time to strength and applied stress. This
relationship depends on empirically determined fatigue param-
eters. While statistical uncertainty in these derived fatigue pa-
rameters has been discussed,"2 the uncertainty in the crack ye-
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locity model itself has usually been overlooked. Some analysis
has been made of the differences between possible crack velocity
models for bulk ceramics.35 In these studies, fatigue data are
fit to different models, and the conclusion was that several models
provide about the same degree of fit, but quite different extrap-
olations of time to failure. However, time to failure is not a
useful comparison of models, since allowed stress for a given
failure time is the more commonly required information. Also
lacking are a comparison of model differences with statistical
uncertainty, and comparisons between models in their prediction
of low strength reliability and proof test effectiveness. In this
paper, these differences between the models are quantified for
fatigue projections from real data. In addition, translations of
predictions from the common power law to other models are
developed in a data-independent formulation.

2. FLAW GROWTH MECHANISMS
The slow growth of a crack in silica arises from a stress-enhanced
corrosion of the Si02 structure. Some research has addressed
the chemical dynamics of this process.6'7 These studies explain
the strong effect of water in promoting crack growth and provide
some independent assessment of the observed dependence of
crack growth on stress. Nonwater chemical environments can
also contribute to stress corrosion of silica. Michalske and Bunker8
suggest a steric effect to explain some observed differences
between environments. Yuce et al.9 studied the effect on actual
fibers of various common chemicals. In practice, avoiding re-
active species, especially water, is difficult. Thus, the typical
reliability problem is to predict the allowed long-term fiber stress
from stress accelerated testing in a similar environment. Crack
growth chemistry and its kinetics are not sufficiently understood
to allow extrapolation from one environment to another.
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Fatigue testing performed in high-temperature water immer-
sion sometimes shows a stress-independent effect, the ''transi-
tion' ' or ' 'knee' ' in the stress versus time to failure 11

This effect correlates strongly with strength reduction at zero
stress in the same environment. The mechanism for the behavior
is not known; it may be a dissolution-like mechanism that be-
comes operative at long 12 Studies have shown that some
coatings can prevent, or at least delay , this effect." '13 The effect
is also absent from fatigue data in less severe environments.
These data along with an empirically determined temperature
dependence of the ' 'transition' ' onset14 suggest that the effect
may not be important in many practical environments. Further
understanding of the mechanism is needed, however, to test this
tentative conclusion. The analysis in this paper deals only with
the stress-enhanced flaw growth reaction, which is clearly op-
erative in nearly all practical environments (for nonhermetic
fiber).

The models that have been proposed for making static fatigue
reliability predictions for silica fiber are all based on crack growth
kinetic models that assume that the strength of the fiber depends
on the presence of well-defined sharp cracks whose seventies
are uniquely defined by one parameter; their length c. However,
the presence of such cracks in high-strength silica has never been
demonstrated. Indeed, strong evidence exists that pristine fiber
is essentially flaw free since the liquid nitrogen (i.e. , inert)
strength of pristine fiber is single valued and close to the the-
oretical strength of the ri12 Reliability predictions for
pristine fiber, therefore, must be considered empirical extrapo-
lations not based on a well-defined or understood physical model.

The strength of multikilometer lengths of fiber is well known
to be significantly lower than the pristine strength, so reliability
predictions must extrapolate on initial strength as well as applied
stress. However, the defects leading to low-strength failure are
often identified with extrinsic defects such as particles that be-
come adhered to or abrade the fiber surface during drawing or
handling. Such defects are usually associated with residual ther-
mal or plastic deformation induced stresses. Therefore, weaker
fiber also may not contain well-defined cracks, and, even if
cracks are present, their growth kinetics will be significantly
perturbed by the residual stresses. Clearly then, extrapolation
from pristine fatigue to weaker fiber fatigue is questionable since
the nature of the defects is changing. This difficulty is corn-
pounded by the lack of any systematic empirical studies of fiber
fatigue as a function of the initial fiber strength, though some
limited data have been 15 Low-load Vickers inden-
tations have been proposed as a model for weak fibers since the
plastic deformation produced by the indents leaves a residual
stress field similar to that around handling damage sites and
adhering art'6 Dabbs and Lawn'6 found that rnicroinden-
tations made at sufficiently low indent loads to avoid crack
formation had an apparent fatigue parameter n of about 20,
similar to the value for high-strength fiber. Later work extended
the post-indent strengths to those more typical of fiber proof test
levels and found a similar 17

Therefore, there might be
enough similarity between pristine and weaker fiber to give some
confidence in the extrapolations. However, note that the cited n
values reflect the measured fatigue dependence on applied stress,
not the dependence on inert strength.

Several difficulties with applying crack growth models to
high-strength fiber fatigue have been discussed. However, from
an engineering viewpoint, reliability estimates have to be made
whatever the state of academic understanding of the phenome-
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non. In the absence of any other model for fatigue, crack growth
kinetics must be used, but their predictions should naturally be
considered with conservatism if not skepticism.

3. STATISTICAL AND MODEL UNCERTAINTY IN
STATIC FATIGUE PREDICTIONS
Depending on the level of sophistication used, it can be a
straightforward task to predict the fiber lifetime from accelerated
testing data. However, there is little value in such an estimate
without some knowledge of the confidence level. Calculating
the confidence interval is considerably more difficult than cal-
culating the expected lifetime, and, perhaps because of this,
rigorous analyses of confidences are usually not attempted in
the literature. Some published studies have considered statistical
uncertainty, i.e. , uncertainty in extrapolation arising from sta-
tistical variability in the results of accelerated tests. However,
such statistical analyses assume that all the uncertainty is in the
parameters that characterize the particular fatigue model used
but ignore the uncertainty in the nature of the model itself. As
we have seen, we do not have a detailed understanding of the
fatigue mechanisms in high-strength silica fiber. Therefore, any
reasonable fatigue model could be used, but each different model
would provide different results for reliability predictions. In this
section, we compare the uncertainty in reliability predictions
from both statistical and model sources. The uncertainty due to
the model will be examined by considering a range of subcritical
crack growth models.

It has now been well established that for ceramic materials
containing macroscopic cracks, subcritical crack growth results
from chemical attack of strained bonds at the crack tip. The rate
of attack, and hence the crack growth velocity, is found to be
dependent on the intensity of the stress field around the crack
tip as quantified by K1, the mode I stress intensity factor. The
following four relationships between crack velocity and K1 will
be considered:

modell (1)

= A2 exP[n2(_)] ' model 2 (2)

= A3
exp[n3(_)2]

model 3 (3)

dc /K1\ F 7K1\l— = A4_) exp fl4_) I model 4 (4)
dt Kj Kj

where c is the crack length and Kj is the critical stress intensity
factor for fast fracture.

Model 1 (Refs. 18, 19) is not based on any physical model
for the fatigue, but is empirically found to fit a range of fatigue
data well. Model 1 is mathematically the most tractable of the
four and, probably for this reason, has been most widely used.
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Model 2 (Ref. 20) is based on simple chemical kinetic theory
in which the reaction rate is given by an Arrhenius type of
behavior and where the stress influences the activation energy
through an activation volume. Model 3 (Ref. 21) is based on
an atomistic model of crack growth, while model 4 (Ref. 22) is
a modification of model 2.

When the effect of temperature is also needed, an Arrhenius
model is typically used. Temperature acceleration is useful for
reliability testing, but it is limited by the effects of high tern-
perature on polymer fiber coatings . Acceleration by increased
humidity provides conservatism, but this effect is not sufficiently
understood to allow extrapolation. Therefore, the dependence
of crack growth on stress intensity is the most important model
from a reliability prediction and design point of view.

Note that model 1 is different from the other models in tern-
perature dependence. The temperature dependence of crack growth
is usually considered as Arrhenius and is contained in the A,
(i = 1 though 4) prefactors. However, for models 2 to 4, K1
influences the activation energy, and so 2, 123, and 124 contain
temperature dependence while the prefactors contain Arrhenius
dependence on the zero stress activation energy. In contrast,
model 1 implies that the activation energy is stress independent,
which is unphysical and is contradicted by experiment.23

K1 is related to the crack length and the applied stress a by
the well-known fracture mechanics relation

ln(tp) = — m2(a) + a , (1 la)

ln[(t1a2)/(a/S + 1/fl2)] = — m2(cT) + a2 , (1 lb)

ln(t1a2) = — m3(a2) + a3 , (12)

ln(t1a2) = — m4(a) + a4 , (13)

where

ml = i, m2 = n2/S, m3 = ny'S, m4 n4JS
(14)

Equation (7) cannot be exactly linearized but note that the term
(1/n2) is small compared to the term a/S so that a close estimate
of 122 can be obtained by fitting data to Eq. (1 la). This estimate
of 2 can then be used to obtain a better estimate from Eq. (lib).
After only a couple of iterations using Eq. (1 ib), the value of
n2 is determined to better than 1 ppm. In fact, the estimates for
n2 determined from Eq. (1 la) and estimates based on iteration
with Eq. (1 ib) only differed by a fraction of 1 % for the two
sets of typical data discussed later, and this difference is more
than 10 times smaller than the standard error in the estimates.
Therefore a single regression using Eq. (1 la) will usually be
enough to obtain n2.

Figure 1 shows the regression fits for power law fatigue
(5) [Eq. (10)] to static fatigue data ofWang and Zupko24 for ''SS2"

laser drawn fiber tested in tension at 90% relative humidity and
32.6°C. Also shown is the power law fit to data of Brownlow
et 25 forAT&T fiber with D-Lux dual coating tested in two-point
bending, 80% relative humidity, and 80°C. The solid lines are
the best fit, while the dashed lines represent a 95% confidence
interval on the extrapolated behavior. Linear regression gives
the best fit and variances on the intercept c and slope m in the

(6) equation

y=mx+c. (15)

reformulated as

y=m(x—)+b, (16)
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(7) However, the covariance of m and c is nonzero. If Eq. (15) is

K1 = Ya\/,
where V is a dimensionless factor of order unity dependent on
the crack geometry. Equations (1) through (4) can be integrated
using Eq. (5) to determine the time to failure tj of a crack
subjected to a constant applied stress a (Refs. 3 and 5):

2 2K1t1cr =
A1Y2(ni — 2)

2 2K I fa\1 fa
tja =

A2n2Y2
exp —

122)

2
2 Kc I fa\1 _______________tfcr

A3n3Y2 ex
—

123) j
, (8) years

\\ \\ \\\\ 1 year

2 2K I fa\1 \\\ \\\ 1 month

t10•
=

An4Y2 ex
—

n4,)j
(9)

\\% \ / BK data
\\\ • iday

for models 1 through 4, respectively, where S is the initial inert wz data

strength of the material (inert strength the strength in the absence \\\\\ \ 1 hour

of fatigue). The equations are derived using the excellent approx- \\\
imation that the starting crack length (corresponding to an inert
strength S) is much less than the crack length at which the crack
propagates unstably (corresponding to an inert strength a). I

25
'

35

These equations may be linearized for ease in fitting to ex-
. . . Applied Stress / CPa

penmental t1 versus a data. The linearized forms are:
Fig. I . Power law (model 1) fits to the static fatigue data of Wang
and Zupko (1968) (WZ data) and Brownlow and Krause (1991) (BK

ln(t1) = — m ln(a) + ai , (10) data).
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m and b are uncorrelated so that the variance in the extrapolated
value of y, &y2, is related to the variances in m and b, Em2 and
zb2, by

tX)?2 = im2(x — )2 + b2 . (17)

The confidence intervals in Fig. 1 are determined by calculating
the curves for y 2zy and, therefore, represent a 95% confi-
dence interval on the extrapolation. The intersection of the lines
with the 25-year axis then gives the maximum allowed stress
and its confidence interval for surviving that time. The allowed
stress is found to be 1 .43 0.09 GPa and 2.07 0.06 GPa
for the Wang and Zupko (WZ) and Brownlow and Krause (BK)
data, respectively. Therefore, extrapolation of these data using
the power law yields estimates with quite modest confidence
intervals.

Figure 2 shows the results of fitting all four models under
consideration to the WZ data. Models 2 and 4 gave similar
predictions of a significantly lower allowed stress than model 1
(the power law) while model 3 predicts an even lower stress.
The lack of overlap of the confidence intervals at 25 years shows
that for these particular data, uncertainty in the applicable model
dominates the statistical uncertainty. Further, the power law
gives overly optimistic predictions of allowed stress ,considering
the lack of evidence to support this model instead of the other
models considered.

Figure 3 shows the fits of the four models to the BK data.
Here again models 2 and 4 give very similar predictions, but
while there is no overlap of the confidence intervals at 25 years,
the predicted allowed stress is similar for both model 1 and
models 2 and 4. Model 3 predicts a much lower allowed stress,
but the very large confidence interval nearly overlaps those for
models 2 and 4. For these data, model uncertainty is of a similar
magnitude to the statistical uncertainty and cannot be ignored.

The regression fits found that the power law (model 1) gives
the best description of the BK data, while model 2 best describes
the WZ data (where best description is determined by the highest
correlation coefficient and smallest extrapolated confidence bands).
Therefore, no one model best fits all data and one is cautioned
against choosing one model over the others because it happens
to give the best fit.

years

0)

0L
0
a)
E
F-

a)

0U-
0F-
0)
EI-

Fig. 3. Extrapolations of the best fits to the BK data for the four
models.

The trends in Figs. 2 and 3 are general and are not data
specific. For example, models 2 and 4 are always similar, and
this can be understood by inspection of Eqs. (1 la) and (13). The
only difference in form is the appearance in the left-hand side
of the equations of a for model 2 and o2 for model 4. Since the
range of a is much smaller than the range of t1, this difference
is negligible. Further, the allowed stress increases in order for
predictions of models 3 , 2, 4, and 1 . This may be proven by
constraining the different models to give the same position and
gradient on the fatigue curve at some representative applied
stress. If this representative stress oo, gives a time to failure to,
then we constrain the models to have the same t1 and dt1/do at
0 This also constrains the fatigue curves for the different
models to have the same position and slope at oo for the log-log
fatigue plot, such as in Figs. 2 and 3. A sensible position for
the constrained point is the median of the fatigue data used for
extrapolations. If the inert strength S for the accelerated fatigue
data is defined as S0, then it may be shown that

fl2fli — 1
(18)

so :r
fl3 _ 121 2;— 2 ' (19)
)Ø bOO

=fli—2• (20)
so

Table 1 compares the fitted values of 2, fl3, and 714 with the
values estimated from Eqs. (1 8) to (20). In all cases the estimates
lie within one standard error of the fitted value. This shows that
one may simply estimate the fit parameters for models 2, 3, and
4 from the best fit parameters for model 1 . This considerably

Table 1. Comparison of fitted and predicted n values. Errors are one
standard deviation. Predicted values are for o = 2.64 GPa for WZ
data and 3.3 GPa for BK data.

Model 4

Model 3 Model 2 Model 1H I F—)-H F—o-H

1 year

1 month

Applied Stress / CPa

Fig. 2. Extrapolations of the best fits to the WZ data for the four
models.

wz data BK data
parameter fitted predicted fitted predicted

at 16.5±0.8 22.8±0.6

n2/So 6.00±0.16 5.89 6.53±0.32 6.61

n3/Sl 1.06±0.03 1.04 0.92±0.07 0.95

n4/So 5.64±0.16 5.51 6.25±0.31 6.30
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reduces the work load associated with examining these other
models. However, this technique does not provide a means for
estimating the uncertainty in the best fit parameters for the other
models and should be used with caution.

Equations (10) through (13) have been used to calculate, for
each model, the allowed stress for a 25-year design life if the
inert strength of the fiber, S, is weaker than the inert strength
of the fiber used for accelerated testing, So. The results for both
the WZ and BK data are shown in Figs. 4 and 5. The allowed
stress is plotted as a function of the inert strength ratio S/So,
and, as expected, the allowed stress is lower as the inert strength
ratio is reduced from unity. Interestingly, the four models con-
verge for very weak fibers. This may be understood by inspection
of Eqs. (6) through (9) where the ratio oiS may be recognized
as the ratio of initial stress intensity to critical stress intensity
which depends on tj2 according to these relationships. As tjo
approaches t0o (i.e., the data region), stress intensity ap-
proaches that in the test data and the extrapolation in stress
intensity (which is the source of model differences) tends to
zero. The error bars on the 25-year stresses in Figs. 4 and 5 are
deduced from Figs. 2 and 3. Confidence intervals on the allowed
stresses in Figs. 4 and 5 would decrease as the S/Se ratio de-
creases, implying that the allowed stress would be better deter-
mined for weaker fibers. Such confidence intervals have been

deliberately omitted since, as discussed earlier, the fatigue be-
havior as a function of inert strength is simply not known and,
therefore, any extrapolations on inert strength must be consid-
ered "best guess."

Since most analysis of fiber fatigue is performed with the
power law, a data-independent conversion of these predictions
to those that would be obtained by the other models is desirable.
Equations (18) to (20) relate the n parameters in a data-independent
way. It is readily shown, also, that the A parameters are related
by the constraint that all models predict a to lifetime at ff stress.
Using these relationships and equating time to failure at the
service stress yields the following transcendental equations that
relate allowed stress in models 2, 3, and 4 to the prediction of
allowed stress from the power law (model 1):

2

I(—) niexp(—v)
\ff 1/

where

2

r=
\to/ \ffo/ ill — 2

where ri , 2, cr3, and O4 are the predictions of models 1 through
4, respectively, of the allowed stress for lifetime t. The terms
ff and to are the stress and time values at the midpoint of the
fatigue data where the models are matched in position and slope
(characterized in these equations by the power law slope fli).
This formulation makes no assumption about the value of stress,
strength, or time, so it is applicable to extrapolations in all of
these parameters. Equations (21) to (23) have been solved, with
a numerical root finding algorithm, for ff2/€r1 , cT3/cTl , and oiJri,
respectively, at various 1 and 2i values. The results are plotted
in Fig. 6 for the commonly occurring i — 20. Tables 2 through
4 provide results for a broad range of and i values. Figure
6 shows that the divergence between models increases as time
to failure is extrapolated farther away from the fatigue data.
However, as revealed also by the data-specific Figs. 4 and 5,
the differences in time-extrapolated predictions decrease as the
strength decreases from that used in the fatigue test. These two
effects are modeled by the parameter 1 = (t/to) (ri/oo)2, which
fully characterizes the degree of difference between models per
Eqs. (21) to (24). Tables 2 to 4 show numerically the effects of

and i on the differences between models. Model differences
are most significant for lower n values. For model 3 especially,
quite significant differences from model 1 are revealed. At high
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\cri exp()
2
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d(lnt) (fli — 2) + ln(—y)
d(lnS) \t0 /

model #3

model #2

model #4

Table 2. Values of 472/UI computed from Eq. (21) for various 4 and
nl values.

0
15 20 25

ci
30 40 80 2001 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 0.98 0.99 1.00 1.00 1.00 1.00 1.00
100 0.93 0.96 0.98 0.99 0.99 1.00 1.00
10° 0.83 0.91 0.95 0.97 0.98 1.00 1.00

0.67 0.83 0.90 0.94 0.97 0.99 1.00
io 0.46 0.72 0.84 0.90 0.95 0.99 1.00
106 0.36 0.58 0.75 0.84 0.92 0.98 1.00
iø 0.09 0.40 0.65 0.77 0.89 0.98 1.00

0.03 0.21 0.55 0.69 0.84 0.97 1.00

1 10 100 1000 10000 100000 le+06

Table 3. Values of a/oi computed from Eq. (22) for various 1 and
nl values.

15 20
ni

25 30 40 80 200
-1-- 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 0.98 0.99 0.99 1.00 1.00 1.00 1.00
100 0.88 0.94 0.96 0.98 0.99 1.00 1.00
io° o.&i 0.82 0.90 0.93 0.97 0.99 1.00
io 0.31 0.61 0.78 0.86 0.93 0.99 1.00
io o.io 0.32 0.59 0.75 0.88 0.98 1.00
106 0.03 0.11 0.33 0.58 0.81 0.96 1.00
io o.oi o.oi 0.12 0.34 0.70 0.95 0.99

.i_p__ 0.003 0.01 0.04 0.14 0.55 0.93 0.99

Table 4. Values of u/r computed from Eq. (23) for various 1 and
nl values.

0.8I
,I. 0.6
ole

0.4

( 0.2

I 01

to ci

Fig. 6. Conversion of model 1 predictions of allowed stress to models
2, 3, and 4 predictions for fli = 20.

n values, which are typical of hermetic fiber, Tables 2 to 4 show
no significant difference exists between model predictions.

The use of Tables 2 to 4 to translate power law predictions
to those of other models is illustrated by the following example:
If the available fatigue data has an i = 20 slope, a midpoint
of cro = 3 GPa at 1 h, and a power law prediction of oi
1 .62 GPa acceptable stress for 25 years, then 1 = (t/t0)
(oi/oo)2 63900. From Tables 2 to 4, r2/1 0.74, 3'1

0.38, and ff4/fl 0.77. Thus, the model 2 and 4 predictions
are about 1 .2 GPa and the model 3 prediction is about 0.6 GPa,
in contrast to the power law prediction of 1 .62 GPa. The pre-
ceding example of high-strength fiber fatigue prediction shows
significant differences between models. If the same fatigue data
were used to predict fatigue for lower strength fiber, the differ-
ences between models would be smaller. For example, i =
0.3 GPa, then = 2190, o2/ff1 ° 0.88, cr3kr1 0.75, and
4jif! 0.90. These model differences are not negligible, but
they are similar in magnitude to the safety margins in many
systems.

4. DISPERSION IN FAILURE TIME
A population of similar fibers under nominally similar stress will
typically have a significant variation in their static fatigue time
to failure. This is explained by the strong dependence of failure
time on both stress and strength. Variation in the local environ-
ment at different fibers, and other factors, may also contribute
to failure time variation. In reliability engineering, predicting
the failure time dispersion, or a bound on this quantity, is often
desirable. Introducing specific distribution functions for stress
and strength into the time-to-failure models [Eqs. (6) to (9)]
is possible. However, the resulting expressions for the time-to-
failure distribution are unwieldy and not conducive to physical
interpretation. A simpler characterization of the relationship be-
tween time-to-failure dispersion and stress-and-strength disper-
sion is obtained by evaluating the derivative of failure time with
respect to stress and strength. When these derivatives are eval-
uated and normalized with respect to the fatigue data midpoint
(oO, to) the following expressions result:

d(lnt) = _fli model 1 (25)
d(lno)

cli
15 20 25

ni
30 40 80 2001 1.00 1.00 1.00 1.00 1.00 1.00 1.00

10 0.98 0.99 1.00 1.00 1.00 1.00 1.00
100 0.94 0.97 0.98 0.99 0.99 1.00 1.00
io 0.84 0.92 0.95 0.97 0.98 1.00 1.00
io 0.70 0.85 0.91 0.94 0.97 0.99 1.00
io 0.52 0.75 0.85 0.90 0.95 0.99 1.00
106 0.32 0.62 0.77 0.85 0.92 0.98 1.00
iø 0.16 0.46 0.67 0.79 0.89 0.98 1.00

0.06 0.30 0.56 0.71 0.85 0.97 1.00

d(lnt)
= (ni —2) ,

d(lnS)

d(lnt) = —i — ln(—yJ ,
d(lna) \ tff /

model 1 (26)

model2 (27)

model2 (28)

d(lnt) _
(too\

_____ — fli 2 ln J ' model 3 (29)
d(lnff) to ,

(ni — 2) + 2 ln(i0) , model3 (30)d(lnt)
d(lnS) \ tff

d(lnt) _
(too\fli ln —y ) , model4 (31)

d(lnff) to !

d(lnt) _ /too\(ni — 2) + ln( J . model4 (32)
d(lnS) \ta /
Since the to2 values of interest for reliability prediction are
greater than t0o, ln(tooto2 < 0. Equations (25) to (32), there-
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fore, show that the power law (model 1) predicts a broader time-
to-failure distribution than models 2 to 4. Depending on the type
of reliability analysis, a broad time-to-failure distribution may
be conservative or nonconservative. If lognormal distributions
for stress and strength are used, then Eqs. (25) through (32)
allow a direct estimate of the variance in the log of failure time.
This is a linearized approximation (since only the first derivatives
of time are considered), which is most valid for small variations
in stress or strength. When both stress and strength are distrib-
uted, time-to-failure dispersion can be computed as the sum of
the variance contributions for stress and strength (assuming these
are uncorrelated).

Equations (25), (27), (29), and (3 1) also model the d(lnt)/
d(lnff) slope changes with time seen graphically in Figs. 2 and
3. Furthermore, these equations show that the d(lnt)/d(lnr) slope
becomes more strongly negative as the strength decreases (i.e.,
0 decreases with respect to uo). Bouten mentions this trend for
model 2 (Ref. 26) and proposes that this model (in contrast to
model 1) is consistent with the observation that n values in bulk
glass (large flaws, low test stress) are greater than those for fiber
(small flaws, large test stress). Equations (25), (27), (29), and
(31) allow quantification of the slope change for models 1 to 4.
Use of these relationships with appropriate data may help to
identify the most accurate fatigue model.

5. PROOF TESTING
Fiber may be significantly weaker than the typical 5 to 6 GPa
short length in-air strength either because (1) the fiber is long
in length and affected by the occasional draw line flaws or (2) the
fiber is subject to handling or other processing (like fiber splicing)
that can weaken it. In these cases, the lowest possible strength
may be unacceptable so a proof test is commonly used to elim-
mate the weakest flaws. Two approaches to modeling the reli-
ability of proof-tested fiber are (1) minimum lifetime27 and
(2) interpretation of the proof test as a short-term fatigue test.28
In approach 1 , the minimum inert strength after proof testing is
assumed to be equal to the proof test stress . The advantage of
this method is conceptual simplicity, but the disadvantages are
a need for inert strength measurement and the neglect of fiber
weakening during proof test unload. Approach 2 treats the proof
test as a fatigue test of sorts and formulates the problem in a
probabilistic sense with model 1 assumed. The result is a for-
mulation that considers weakening during proof test unload and
does not require an inert strength measurement.

No matter which proof test modeling technique is used, power
law predictions of allowed stress on proof-tested fiber can be
translated to model 2, 3 , or 4 predictions via Eqs. (21) to (24)
or Tables 2 to 4. To do so, however, does entail the new as-
sumption that the power law prediction of fiber weakening from
proof testing is consistent with predictions from other models.
The validity of this assumption is addressed by the following
analysis. Weakening of a fiber under a constant stress may be
characterized by integrating Eqs. (1) through (4) and introducing
Eq. (5) to give the following expressions:

t =
AiY2(n1 2)

(5 5fl12) , (33)

\\ 1fl2ff\1+
1) exp )j ' (34)

(35)

____ ___ - exp(;;)] , (36)

for models 1 through 4, respectively, where 5, is the initial inert
strength and S is the final inert strength. [Equations (33) through
(36) reduce to Eqs. (6) through (9) for time to fracture, when
Sf is significantly less than S = S. I If we assume, conserva-
tively, that the unload portion of the proof test is slow, then no
minimum inert strength exists after proof testing. The degree of
weakening introduced by proof testing can then be characterized
by normalizing the initial inert strength Si to the maximum initial
inert strength that breaks during the proof test, Sib . For each
model, Sib 5 determined from the corresponding expression from
Eqs. (33) through (36) using o = , the proof test stress,
t = the proof test time (or effective proof test time to account
for loading and unloading stages), Sif = 0 (i.e. , fiber breaks at
the very end of the proof test), and Si = Sib . Introducing the
resulting expressions along with Eqs. (18) through (20) into Eqs.
(33) through (36) gives the following expressions that relate the
degree of fiber weakening Sf/Si to the normalized initial inert
strength Si/Sib:

( = [ — ()
-

1/r]r
model 1 (37)

+ ) exp[—vR(S/Sb] (v + )

model2 (38)

model 3 (39)

model 4 (40)

V=fli—l . (41)

— exp[— (R2/2r)(S1/Sb)2]}

where

R =
\00

— exp[—(R/r)(S/Sb)]}

fSo\ 1

k\:;;:) r=2,
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Fig. 7. Comparison of proof test weakening predictions for models
I through 4.

The nondimensional parameter R is typically greater than 1.0.
(It can be shown that R 1 if tr2 for the proof test is less than
ti). Except for Eq. (38), these expressions are solved readily
in closed form. A numerical solution to Eq. (38) was obtained
with a root-finding algorithm. The results for all models [Eqs.
(37) through (40)] are plotted in Fig. 7 for R = 1 and i = 20.
This figure shows the power law model to be the most pessimistic
in terms of predicting fiber weakening during proof test for the
conservative case of slow unloading. It is readily shown that
this conclusion is independent of fli and R for R > 1 .Therefore,
when a power law prediction of allowed stress on proof-tested
fiber (where slow unloading is assumed) is converted to a dif-
ferent model prediction via Eqs. (21) through (24), the results
will be somewhat conservative because the most pessimistic
model of strength truncation will be assumed.

6. SUMMARY AND DISCUSSION
Analysis in this paper has shown that the uncertainty in the crack
growth model cannot be ignored in making reliability predictions
for optical fiber under stress. The statistical uncertainty is sig-
nificant also, but is usually smaller than the model uncertainty.
The differences in allowed stress predictions between models
become quite large at long times ,especially for fiber of the same
strength as that used in the fatigue test. Clearly, it would be
desirable to know which model most accurately characterizes
the fatigue process. Unfortunately, the current understanding of
crack growth does not allow us to determine the most accurate
model, so engineering judgment is required to determine the
appropriate degree of conservatism for a given application . How-
ever, it seems clear that the power law model is not appropriate
given its lack of a physical basis and its optimism compared
with other models that also fit the available fatigue data well.

A common application of fiber fatigue models is to predict
allowed stress on fiber that is significantly weaker than the fatigue-
tested fiber. Analysis in this paper has shown that for such cases,
the differences in model predictions become small. This fact
and the common use of design safety factors may explain the
generally positive field reliability of optical fiber systems de-
signed with power law analysis. However, since model differ-
ences are quite large for some applications, universal use of the
power law model is not recommended.

While models 2 to 4 (the nonpower law models) are math-
ematically ' 'messier,'

' this paper shows that static fatigue anal-
ysis with these models is tractable. Since model 4 yields sig-
nificantly simpler forms but similar predictions to model 2, perhaps
this latter model is not needed. On the other hand, model 2
seems to have the strongest physical basis of any of the models.

The development of data-independent conversions of allowed
stress prediction from the power law to other models provides
a quick way to assess the difference between models. It has
been shown that when this correction is applied to predictions
for proof tested fiber, some conservatism is introduced. Rela-
tionships between time-to-failure dispersion and strength-and-
stress dispersion are important to many reliability analyses, and
may also aid in the physical interpretation of fatigue data. It is
shown that a linearization of this relationship leads to simple
expressions that allow failure time dispersion estimates for each
of the models. We hope that further work in optical fiber fatigue
will yield a greater understanding of the crack growth process
so that model uncertainty is reduced and the reliability prediction
job becomes more straightforward and less risky.
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