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ABSTRACT

The mechanical reliability of optical fiber used in certain biomedical applications is extremely important because failure of
the fiber during use might be fatal for the patient. Therefore, prediction of the lifetime of the fiber both in storage and during
service is necessary before the fiber can be safely used. In this paper we study two commercially available optical fibers
designed specifically for high power laser delivery. The fatigue parameters calculated from static fatigue data are used to
estimate the maximum allowed stress that ensures survival for the design life of the fiber. This work properly accounts for
uncertainty in the predictions; uncertainty which arises not only from scatter in the experimental thta, but also from
uncertainty in the form ofkinetics model to use for extrapolation (i.e. power law, exponential, etc.). This paper thus provides
an outline for making lifetime predictions for a critical applications involving relatively short lengths of fiber, that does not
bind in any questionable assumptions.
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1. INTRODUCTION

The applications of optical fiber are not restricted to telecommunications, but widely used for different purposes. The
polymer coated silica optical fibers studied in this paper are specifically designed for high power laser deliveiy, which can be
used for biomedical or industrial purposes. The proposed usage of the particular fiber discussed here is to be the main
component of a 3 .5 meters long fiber probe, which is used to perform heart surgeiy in the human body.

There are two mechanical reliability issues which are of concern for this application of the fiber. The first concern is
the short-term reliability. During service, the tip of the fiber will be inserted into a human body and bent through a large
angle in order to perform the surgery. The expected service time is less than 5hours. The fiber therefore has to survive at
least 5 hours under a large bending stress in an environment inside a human body which is warmer and wetter than ambient
air. The short-term reliability is extremely important because failure ofthe fiber during surgery might be fatal to the patient

Another concern is the long-term mechanical reliability of the fiber. After manufacture, the fiber probe is coiled into a
radius of —.. 60 mm (or bigger) and stored inside a sterile plastic bag. Since the plastic bag is permeable to water vapor, the
fiber is simultaneously exposed to stress and moisture, and so can degrade in strength by fatigue. The expected storage time
between manufacture and use is 3 years in this application, and it is therefore necessary to avoid failure on this time scale.
Failure during storage, while not dangerous for patients, would not inspire confidence in the surgeon!

In this paper, we compare the mechanical behaviors of two commercial optical fibers that are candidates for use in this
application. The short-term reliability of the fibers under a simulated service condition was assessed by performing two-
point bending dynamic fatigue experiments. The long-term reliability of the fibers under storage conditions was investigated
by performing static fatigue experiments, again in two-point bending. Since it is usually impossible to conduct experiments
on a very long time scale to directly assess the long-term reliability, the experiments are usually performed in a harsher
environment and the results are then extrapolated to the less severe service conditions. In this study, static fatigue
experiments at high stress levels were performed in a liquid environment, which is a more severe environment than the
storage condition. The strength degradation and the maximum allowed stress that ensures survival for the design life of the
fiber were then estimated by extrapolating the static fatigue data to lower applied stress using several fatigue models.
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The reliability of long lengths (>1 km) of fiber is controlled by occasional weak defects which are extrinsic in nature.
In the application of interest here, the lengths involved are comparatively short. Provided a sufficiently high quality fiber is
used, the probability of encountering a weak defect is acceptably small, even at the high confidence levels required in this
application. With this prevision, the reliability is controlled by the behavior of the intrinsic defects encountered during
testing of relatively short lengths of fiber. The methodology of lifetime prediction used in this paper therefore will not take
the weak defects into account Tensile tests on long lengths of fiber could not be performed because of the high loads
required to break these thick fibers caused gripping problems. Two-point bending has been used throughout.

What distinguishes this work from previous reliability estimates is that it properly accounts for uncertainty in the
predictions; uncertainty which arises from not only scatter in the experimental data, but also due to our uncertainty of which
is the correct kinetics model to This paper presents an algorithm for making lifetime predictions for a critical but
relatively short duration and short fiber length application.

2. EXPERIMENTAL PROCEDURES

Two silica optical fibers, designated fiber I and fiber II which were obtained from two different manufacturers, were
subjected to the same tests. Both fibers have the same glass (cladding) diameter of 400 pm and the polymer coating
diameter of430 .tm; they both also have an outer buffer polymer coating, which makes the overall coating diameter 730 pm.

The fibers were broken into 60 mm lengths. Specimens were randomly picked to avoid any effects of systematic
variation in strength along the length of the fiber. Testing was performed in two different environments. The first was 37°C
standard saline solution (LabChemt), which simulates conditions inside the human body during surgery. The second
environment used was 30°C pH 7 buffer solution (Fisher Scientific) used to simulate the worst expected storage conditions.
The temperature and humidity of the storage conditions for the fiber probe are not known in advance but are very unlikely to
exceed 30°C 100% humidity; the 30°C liquid test environment is therefore a worst case —survival here would ensure survival
under reasonable storage condition.

3. RESULTS AND DISCUSSION

3.1 Permeation studies

The validity of the dynamic and static fatigue experiments was ensured by performing permeation studies in order to
estimate the time needed for the testing liquid to fully penetrate the fiber coating. The specimens were immersed in both of
the liquid test environments for various times, and strength was measured at a constant strain rate of 5°iWmin by a dynamic
two-point bend apparatus. Ten specimens were broken for each of seven immersion times which ranged from 10 s to 3 days.

The results of the permeation studies indicate that at least 2 hours is needed for the testing liquid to fully penetrate the
coatings. No severe strength degradation was observed for immersion times of up to 3 days, indicating zero stress aging does
not happen in such a short time under these testing conditions. Therefore, it was determined that the fibers used for dynamic
and static fatigue experiments would be pre-equilibrated with the testing environment overnight before performing the tests.

3.2 Dynamic fatigue

Two-point bending dynamic fatigue experiments2'3 were performed in both test environments at constant strain rates of
0.005% to 50%per minute. Fifteen specimens were tested under each condition.

The dynamic fatigue experiments tested in 37°C saline solution and 30°C pH 7 buffer solution show very similar results
for the two fibers under each testing condition. The fatigue parameters, n,calculated from the dynamic fatigue data, are
summarized in table 1 where the errors represent a 95% confidence interval. From the dynamic fatigue results, the fatigue
parameters are very similar for both fibers in the two different testing environments. Therefore, it is fair to suggest that both
fibers have comparable short-term mechanical reliability for the expected service thne of5 hours.

tLabChem Inc., Pittsburgh, Pennsylvania, USA
Fisher Scientific International Inc., Pittsburgh, Pennsylvania, USA.
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Table 1 Fatigue parameters (n 95% confidence interval) calculated from the two-point bending dynamic fatigue data.

37°C saline solution 30°C pH 7 buffer solution

Fiberl 25±4 26±1
Fiberll 27±2 27±2

3.3 Static fatigue

Static fatigue experiments in two-point bending" were accomplished in 30°C pH 7 buffer solution at eight applied stresses in
the range of 3 to 5 GPa Fifteen specimens were tested for each stress and the results are shown in figure 1. The static
fatigue data in the high stress region (> 4 GPa) give similar times to failure for the two fibers. This again indicates that the
short-term mechanical behavior is similar for both fibers, and is consistent with the dynamic fatigue results. However, when
the fibers were tested at lower stresses, the failure time for fiber I is shorter than for fiber II. The fatigue parameter, n,
obtained from static fatigue data is 22.4 0.7 for fiber I, and 25.4 0.7 for fiber II. This small but statistically significant
difference in n means that at low stresses, fiber II has a significantly longer thne to failure.
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Figure 1. Static fatigue data for fiber I and fiber II measured in 30°C pH7 buffer solution.

The bending radius axis shown at the top of figure 1 represents the uniform radius of curvature that would result in a
maximum bending stress equal to the corresponding applied stress on the lower axis. This graph can thus be used to indicate
what the expected failure time would be for the fiber coiled to that radius. It is readily shown that the bending radius, R, is:

Ed
R =

2o (1)

where is the applied stress, df is the diameter of the glass fiber, and E =E0(1+ac) is the elastic modulus. Here E0 is the
Young's modulus ofthe glass in the limit of zero strain, a =2.125 for bending, and c is the strain.

4. LIFETIME PREDICTION

A short length of the end of the fiber will be heavily bent during surgery; this is one of the reliability concerns.
However, the proposed service duration is only -5 hours, while it is expected to survive for 3 years in storage. Calculations
show that failure of the fiber is more likely to happen during storage at 30°C for 3 years, rather than during surgeiy at 37°C
for 5 hours. Therefore, if the fiber survives the storage conditions, it should not fail in service. However, in future work we
will explicitly examine reliability under surgical conditions.

117

10'

io

4.5 4 3.5

3 3.5 4 4.5 5 5.5



In this section, the case of fiber I will be used to demonstrate the estimation of the minimum allowed bend radius in
storage for a certain design lifetime. The same method will then be adopted for fiber II to make a lifetime prediction for that
fiber.

Any lifetime models need to assume some functional form for the dependence of the slow crack growth velocity, ê , on

the applied stress intensity, K1. Since the predictions are sensitive to the particular kinetics model assumed, we will here
consider three different forms. The first model is the widely used empirical power law:5'6'7

e = A1K' ; model 1 (2)

the second model is based on simple chemical kinetics:8'9

a = A2 exp(n2Kj ) ; model 2 (3)

and the third model is simplified from a chemical potential model proposed by Lawn:10'1'

a = A3exp(n3K) . model 3 (4)

The preexponential factors, the A, are parameters which depend upon the environments as well as the materials, and the n,
are the fatigue parameters (also known as the stress corrosion susceptibility). The power law has generally been favored
because the fatigue equations can not always be solved analytically for the exponential forms. However, solutions for the
particular case of static fatigue (cra constant) are presented for the exponential forms by Jakus et In the following
section, the power law will be used to illustrate the fiber lifetime prediction methodology. The lifetime estimated by using
the other two models will also be shown and compared.

4.1 Prediction procedures

The requirements of the application are that a minimum bend radius should be found that ensures a better than 99.9%
chance of survival, and that this prediction should have 99.9% confidence. The procedures for making a lifetime prediction
that satisfy this requirement for the fiber are:
Step 1. Regression fitting to the static fatigue data to find the regression parameters.
Step 2. Finding the median time to failure, tm, whichgives the fiber a 99.9% probability of surviving for a design life, t.
Step 3. Finding the 2-point bend stress, co, corresponding to 4,,, i.e. extrapolating the static fatigue data to t,,,.
Step 4. Finding the 2-point bend stress, which gives the fiber a 99.9% chance to survive over tm. Thit 1S, finding the stress
at the 99.9% lower confidence bound of0.
Step 5. Converting the 2-point bend stress, to the uniform bending stress, a,,, which gives the same lifetime and failure
probability.

The main parameters used to make a fiber lifetime prediction are: E0 (Young's modulus) 72 GPa, fiber diameter d1
400 .tm, design lifetime in storage t5 3 years, survival probability at design life p 99.9% and Weibull modulus for strength
m 25. Further, the overall estimate must have a 99.9% confidence. To ensure that the fiber would survive in the storage
environment, the worst cases are assumed in every step of making a lifetime prediction. For example, the Weibull modulus,
m, is not a mean value but a rather low estimation from strength data.

4.2 Regression parameters

The regression parameters were obtained by fitting the static fatigue data to the following model, as shown in figure 2:

y=ms(x—xm)+bs (5)

where y = log t1 is the time to failure in seconds, x = log a1S the applied stress in GPa, m is the slope of the linear regression
line, Xm 5 the mean x, i.e. mean log a , and b5 is the intercept at mean x. For fiber I, m = —22.4 and the standard error of m,
Es-me, is 0.35; Xm = 0.60, b = 4. 1 and ztb (the standard error of b) is 0.02.

The static fatigue parameter, n, for fiber I is equal to —m, i.e., n = 22.4. The Weibull modulus for the time to failure in
static fatigue, mt, can then be calculated from m1 = m/(n —2) 12 In this case, m = 25, giving mt = 1.225.
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y = (log tj)

Figure 2. Schematic of linear regression model for fithng static fatigue data.

The median time to failure, tm, which gives the fiber a p% probability of surviving over a design lifetime, t, can be
calculated from the following equation:'3

ln(failure probability for t)
(6)(tj —

ln(failureprobability for tm)
where the failure probability for the median time, tm, is 50%, and the failure probability for t5, which has a 99.9% survival
probability, is 0.1%. For fiber I, this gives tm= 19.6 years.

4.4 Extrapolated stress in two-point bending

After finding the median time to failure, tm, the corresponding applied stress under two-point bending can then be
calculated from the following equation by rearranging Eq. (5):

1ogt blogc0= +Xm. (7)m

For fiber I, the applied siress, , whichgives the required median lifetime is 2.46 GPa.
This represents extrapolation of the best fit line (solid line in figure 3) to a median life of tm 19.6 years. However,

there is uncertainty in the extrapolation (the dotted lines). In order to have 99.9% confidence in the predicted stress, we now
calculate ,, the stress where the lower 99.8% prediction confidence interval intersects tm = 19.6 years. (The 99.8%
confidence means the actual behavior has 0.2% chance of being outside the bound, i.e., 0.1% chance of being below the
bound.)

Figure 3. Extrapolation of static fatigue data of fiber I (detailed from figure 1) to the median failure
time and the corresponding stress to lower confidence bound.
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A 100(1—x)% confidence interval of a simple linear regression line at x = x0 may be computed by standard regression
anal14 In most cases, the confidence interval on y in Eq. (5) is found for a known x, while in this case an unknown xis
obtained from a knowny. Figure 3 shows the extrapolation of the static fatigue data of fiber I to the median failure time (19.6
yr.) and the corresponding stress to lower confidence bound (c). The maximum applied stress, o, shown in figure 3 can be
obtained by finding the root of the following uati'4

I 2 ( i (1og Xm)21ogt =m(log Xm)+bs tp l(') Nf+ 2 (8)
' N (Ab/) N)

where N is the sample size, t,, is the single sided t-statistic for probability p 99.9%, i.e., a 0.001. The calculated result of
cTt for fiber I is 2.35 GPa.

4.5 Stress in uniform bending

The applied stresses obtained above were calculated from the experimental thta, i.e., assuming two-point bending.
However, the fiber is subjected to uniform bending during storage. In contrast to two-point bending, the surface tensile stress
in tmilonn bending is uniform along the length. Matthewson and Kurkjian have compared the fatigue statistics for two-point
and mandrel bending (the latter is the same as uniform di12 They find that the mean time to failure under static two-

point bending, ,
12

1/rn

to-pot = B2
2

Art
I

F(1 + I I m ) ; (9)
cT;' 4Er I((nmt —1)/2)I(nmt)

while the mean time to failure under mandrel bending, tmaxuirel ' is:

- Bc?'2 [ A 11/rn
tmfreI = r

ç F(1 + 1 I m ) , (10)
cT;;7 L2rlrnnmt)J

where B is a parameter which depends on the environment and the material, r 15 a reference stress, Ar 1S a reference area of
unity magnitude, cr,,, is the mandrel bending stress, r is the radius of the fiber without coating, im 1S the length of fiber
wrapped around the mandrel. 1(x) is :12

x+1

I(x)=(2)
(11)

where I' is the well-known gamma function. The equivalent mandrel bending stress that gives the same mean thne to failure
as measured in two-point bending is found by equating the times in Eqs. (9) and (10):

rn 2Er

1nm
—

1J] (12)
atirn 2

Here 4,, is 3.5 m and r is 200 .tm. Therefore, m for fiber I is 1.84 GPa, and the corresponding bending radius, Rm, 15 8.0 lUfli.

4.6 Comparison of mechanical reliability

The lifetime of fiber II can be estimated by the same methods used for fiber I. Table 2 summarizes the parameters and
the calculated results of lifetime predictions for both fibers. On a long time scale, fiber II is more reliable than fiber I,
although the short-term strength for both fibers is similar. The two fibers are both capable of being bent to a veiy small
radius (on the order of mm) and still have a 99.9% chance of survival for 3 years in a relatively warm (30°C) and humid
storage environment.
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Table 2 Summary oflifetime predictions for fiber I and fiber II using the power law.

Parameters and results Fiber I Fiber II

Regression parameters:
—22.4±0.35
4.11±0.02

0.60

—25.4±0.34
3.39±0.02

0.63

m±Am5
b5±Eb3

Xm

Weibull modulus in static fatigue, m 1.225 1.067

Design lifetime in storage, t 3 years 3 years

Median failure time, tm 19.6 years 25.9 years

c0 (2-point bend stress corresponds to tm) 2.46 GPa 2.59 GPa

(maximum permiUed 2-point bend stress) 2.35 GPa 2.49 GPa

m (maximum permitted bend stress in storage)
Rm (minimum allowed bend radius in storage)

1 .84 GPa

8.0 mm

1.94 GPa

7.6 mm

4.7 Kinetics models

In the above prediction, the power law was used to demonstrate the estimate of minimum allowed bend radius for fiber
survival. However, if we want to estimate the fiber lifetime by using the other kinetics models, the prediction procedures
described above are still applicable. Identical procedures are used except that the static fatigue equation appropriate for the
particular is used in steps 1 and 3.

To show the effect of using different kinetics models on the lifetime predictions, the static fatigue data of fiber I and
fiber II are fitted to the three kinetics models by using the linearized forms described in the paper by Bubel and

tth'5 For long duration, the kinetics models do give quite different predictions, as shown in figure 4.
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Figure 4. Static fatigue data of(a) fiber I (b) fiber II fitting to various kinetics models.
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The maximum allowed stress and the corresponding bending radius for both fibers estimated by models 2 and 3 are
summarized in table 3. In spite of the observation that the experimental data in this study fit model 1 better than the other
two models (figure 4), we will consider the worst case, i.e.,model 3. Table 3 shows that the critical bending radius estimated
by model 3 is still much smaller than the real bending radius for the fiber in storage (> 60 mm). Therefore, taking all the
uncertainties in making fiber lifetime predictions into account, the fibers in this study should both be mechanically reliable
for at least 3 years under storage conditions.

Table 3 The maximum allowed bending stress and the corresponding bending radius estimated for models 2 and 3.

Bend stress
Bend radius

Model 2
Bend stress
Bend radius

Model 3

Fiber I Fiber IIFiber I Fiber II

r 2.14 GPa 2.37 GPa cy 1.57 GPa 1.93 GPa

1.84 GPa 1.92 GPa y 0.61 GPa 0.68 GPa

m
Rm

1.45 GPa

10.1 flhlfl

1.51 GPa

9.7111111

cym

Rn,

0.50 GPa

29.0 111-tn

0.56 GPa

25.9 fllfll

5. IMPACT OF BIMODAL STRENGTH DISTRIBUTIONS

The above analysis assumes that it is valid to extrapolate from the strength distribution of high strength fiber measured
in short lengths to low failure probability. However, it is well known that for long tested lengths (equivalent to low failure
probability for short lengths) a broad low strength mode is observed due to the presence of occasional extrinsic 1617

ifsuch weak defects occur with sufficient frequency, they will impact the reliability of the fiber probe even though they were
not observed during our experiments.

In order to determine the importance of the weak defects, it is necessary to know the distribution of the low strength
mode. Few data have been published on the strength distributions of weak defects. Glaesemann and Walter18 present a
technique for obtaining such data relatively easily. Assuming a worst case Weibull modulus of 2 for the weak defects,19 the
equivalent tensile test length for the fiber probe in storage is calculated to be 0.84 12 99.9% probability of survival of a
0.84 m fiber corresponds to a 2% failure probability for a 20 m gage length (figure 5 in ref 19), which is in the highstrength
mode. This calculation shows that the fibers used in our study are still in the high strength mode using the parameters
obtained from a particular fiber manufactured in 1986. However, the low strength distribution will vary for different
manufacturing runs. Since the low strength distributions are not available for the fibers used in this study, the probability of
failure of the probe due to weak defects remains unknown, although it is expected that a well-made modem fiber would have
a reliability at least as good as the 1986 fiber. Reliable tensile strength data could not be obtained for these fibers because of
the difficulties involves with gripping such thick specimens.

6. SUMMARY

The mechanical reliability of two optical fiber specimens that are candidates for use in a biomedical application were
studied by performing dynamic and static fatigue experiments in the simulated service and storage environments. The static
fatigue data were used to make lifetime predictions. It has been observed that the two fibers from different manufacturers
were comparably reliable for a short service time on the order of hours independently of the kinetics model used. However,
fiber II was found to have somewhat better long-term reliability than fiber I.

This paper outlines procedures for making lifetime estimates that take into account statistical variation in the measured
parameters. It considers several kinetics models and is not limited to using the ubiquitous power law form. It is found that
the models do give quite different predictions and the power law provide the most optimistic predictions. For such a critical
biomedical application, it is recommended that an exponential form for the kinetics be used in order to provide a "worst case"
analysis.

In this work, we have auempted to make predictions at the 99.9% confidence level. However, the static fatigue data
involve breaking only 120 specimens of each fiber. We therefore can not preclude the possibility of the existence of very
weak flaws at a low probability level. Such flaws would invalidate our analysis. However, it is still necessary to make a best
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effort at niaking a lifetime prediction before using the fiber. The techniques outlined here are valid for any application using
short lengths of fiber for which the probability of encountering weak defects is negligible.
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