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ABSTRACT 
 
Strength-Probability-Time (SPT) diagrams provide an intuitively pleasing method for presenting reliability data based 
on extrapolations from accelerated fatigue testing data.  If power-law crack growth kinetics are assumed the calculations 
required to generate the SPT diagram are particularly simple.  However, if exponential or other more complex forms are 
used, this is not the case.  If the accelerated data are for dynamic fatigue measurements (strength as a function of 
stressing rate) the SPT diagram can only be determined after numerical integration of the crack growth equations, 
followed by non-linear regression to the fatigue data.  However, we have developed software to perform this task.  In 
this paper we describe the methods used and show sample results of lifetime predictions using SPT diagrams.  Also, the 
effect of using different crack growth kinetics models on predicted lifetimes is discussed. 
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1. INTRODUCTION 
 
The mechanical reliability of optical fiber and of many fiber components is normally assured by proof testing which 
removes the largest defects so that the surviving fiber or components have a minimum assured strength.  Standard 
fatigue equations based on power law crack growth kinetics are then used to predict the minimum time to failure for a 
given applied service stress, or to calculate the maximum permitted service stress that ensures a specified service life.  
Although simple in principal, the equations are complicated by accounting for subcritical crack growth during proof 
testing and during unloading after the proof test.  The equations are further complicated when two region power law 
crack growth is taken into account [1].  However, mathematical models are published and guidelines for service stress 
or lifetime calculations as a function of proof stress are available [1]. 
 
Many fiberoptic components using lengths of fiber require removal of the polymer coating from the fiber thus exposing 
the fragile glass surface to damage during subsequent fabrication steps.  Proof testing the fiber prior to fabrication is not 
useful because the fabrication process might well introduce damage into the fiber surface.  Proof testing after 
encapsulation might also not be feasible since the fiber might be bonded or strain relieved where it enters the package.  
Therefore, for some fiberoptic components it is not possible to proof test the fiber and so ensure a minimum strength.  In 
such cases it is therefore hard to ensure mechanical reliability; unless it can be assured that the fiber sees no mechanical 
stress (which is usually not the case).  However, in some cases it is possible to dismantle the component and carefully 
remove the fiber and then measure its strength.  Also, it might be possible to remove the fiber before final assembly, 
provided that final step itself can not introduce damage.  This permits characterization of the strength distribution of the 
fiber which in turn can be used for making lifetime predictions.  Such predictions are probabilistic since without proof 
testing there is no assured minimum strength and the minimum strength for any component can in principal be 
arbitrarily small.  However, a probabilistic estimate of reliability is better than no estimate at all.   
 
Optical fiber components for which this approach may apply include certain designs of connectors, couplers, fiber 
Bragg gratings, amplifiers, sensors, etc..  We are unaware of any published data on the strength of fiber extracted from 
such components; measurements have either not be performed or, more likely, the information is of a highly sensitive, 
proprietary nature.  This work will therefore illustrate the kinds of reliability predictions that can be made by using 
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published data for fiber that has been deliberately weakened by methods which model typical strength degrading 
processes such as handling of bare fiber. 
 
 

2.  CALCULATION OF STRENGTH-PROBABILITY-TIME DIAGRAMS 
 
Strength-Probability-Time (or SPT) Diagrams [2] are a useful tool for visualizing reliability data.  It is assumed that the 
fiber removed from a component is broken under conditions of dynamic fatigue (constant stress rate) at one or more 
stress rates.  This permits estimation of the flaw size/strength distribution and in addition, if multiple stress rates are 
used, estimation of the stress corrosion susceptibility parameter, n.  If only one stress rate is used then a worst case 
value for n will need to be assumed.  Starting with the measured strength distribution, it is possible to predict the static 
fatigue behavior, i.e. the distribution of, for example, the time to failure for a given service stress or of failure stress for 
a given design life.  SPT diagrams are a graphical representation of the results of such calculations. 
 
2.1  Calculation of SPT diagrams for power law fatigue kinetics 
 
Calculation of SPT diagrams is normally performed by a sequence of steps that involve using the well-known result that 
for power law fatigue the time to failure in dynamic fatigue (constant stress rate) is ( 1)n +  times greater than the time to 
failure in static fatigue (constant applied stress) for the same stress at failure (e.g. Ref. 3).  However, a more 
straightforward approach is to combine the static and dynamic fatigue equations.  It is useful to summarize the 
derivation of the relevant equations so that the built-in assumptions are made clear.  Power law fatigue is assumed, i.e. 
the crack growth rate, dc dt=v , is proportional to a power of the stress intensity at the crack tip, KI: 

 I
nA K=v , (1) 

where A and n are fit parameters. This equation is combined with the standard fracture mechanics equation that relates 
the stress intensity due to an applied stress σ acting on a crack of length c and shape parameter, Y: 

 1 2
IK Y c= σ , (2) 

to generate a differential equation that can be solved for any loading scheme, ( )tσ .  For static fatigue the applied stress 
is constant, ( ) atσ = σ , giving the time to failure: 
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where iσ  is the initial or inert strength defined by: 

 1 2
IC i iK Y c= σ , (4) 

where ci is the initial length of the crack.  The applied stress is normally somewhat less than the inert strength so that, 
given that n is usually large (typically greater than or about 20 for silica): 
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The second term in parentheses in equation (3) is therefore negligible so that, to a good approximation, equation (3) 
simplifies to the well-known result: 
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where the “B parameter” is: 
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A similar approach may be taken for the case of dynamic fatigue with a constant stress rate, ( )t tσ = σ& .  The strength or 
failure stress, fσ , is given by: 
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Usually the strength fσ  is measured at moderate rates so that it is significantly smaller iσ  and so again, given that n is 
usually large: 

 2 2n n
f i
− −σ << σ . (10) 

The second term in parentheses in (9) is therefore negligible giving: 

 1 2( 1)n n
f in B+ −σ = + σ σ& . (11) 

The term in 2n
iB −σ  cancels when equations (7) and (11) are divided together to give: 
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Equation (12) can be used to construct an SPT diagram directly.  For each strength measurement taken at various 
stressing rates, ( )fσ σ& , the corresponding time to failure ft  can be determined for a given service stress, aσ .  This 
results in a distribution of times to failure for that service stress, or alternatively, the distribution of failure stresses for a 
given service life can be calculated. 
 
The above analysis is well known and has been published in textbooks [3].  However, it is outlined in detail here for the 
following reason.  Equation (12) is very convenient since it does not require knowledge of iσ , which is a parameter that 
is hard to measure accurately (e.g. Ref. 4).  But, this is only the case if it is possible to use the approximations of 
equations (5) and (10).  If any measurement under static or dynamic conditions exposes the fiber to a stress close to the 
initial/inert strength, iσ , those approximations are invalid and so equation (12) is also invalid.  Under these 
circumstances, a value for iσ  (but not B) is needed for calculation of SPT diagrams.  This is demonstrated by dividing 
equations (3) and (9) to yield: 
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However, equation (13) is invalid due to another assumption/approximation that is implicit in the above derivations.   
 
It was implicitly assumed that equation (1) is valid throughout the region of interested, i.e. for values of KI ranging from 
its initial value at the start of a measurement to KIC when the crack starts growing unstably.  It has been shown [5] that 
weak silica optical fiber exhibits “Region II” subcritical crack growth in addition to the “Region I” behavior described 
by equation (1).  This will influence the behavior if the fiber is ever subjected to stresses comparable to iσ ; this is the 
case when proof testing and Glaesemann and co-workers have incorporated this behavior into reliability models for 
fiber that has been proof tested [1]. 
 
Not withstanding this, if the approximations of equations (5) and (10) are valid (and this is usually the case) iσ  does not 
need to be known.  Essentially this is because the time that the crack spends exposed to KI near KIC is negligible 
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compared to the overall time to failure and so the actual behavior in that region is unimportant.  In particular, the 
presence of Region II subcritical crack growth is not relevant.  This has important implications for the calculation of the 
SPT diagram for exponential kinetics models.  Further justification for this statement will be provided later. 
 
2.1  Calculation of SPT diagrams for exponential fatigue kinetics 
 
The power law form of the kinetics for fatigue, equation (1), is empirical and is not based on any physical model.  It is 
used principally for its mathematical simplicity.  When combined with the fracture mechanics relationship the resulting 
differential equation can be integrated to produce analytical results for both static and dynamic fatigue.  For more 
convenient comparison with other kinetics models, the power law will be referred to as Model 1 and the fatigue 
parameters, A and n, will be represented by a subscript one.  Equation (1) then becomes: 

 11 I
nA K=v , (14) 

Exponential forms have been proposed that are based on chemical rate theory.  Model 2 was suggested when it was first 
recognized that fatigue is a stress corrosion phenomenon [6]:  

 2 2 Iexp( )CA n K=v . (15) 

This form assumes that the crack tip stress affects the chemical kinetics through an activation volume in much the same 
way that pressure is known to affect chemical kinetics.  A more rigorous treatment yields a form [7] which can be 
simplified to give Model 3 [8]: 

 2
3 3 Iexp( )CA n K=v . (16) 

All three models that we consider here have two parameters, Ai and ni (i = 1..3), which have similar meaning.  The ni 
represent the sensitivity of the crack growth rate to the stress intensity at the crack tip while the Ai are a measure of the 
overall rate and are related to, for example, the activity of moisture (humidity).  All three models can be interpreted in 
terms of absolute rate theory for the stress corrosion process in which case the ni represent how the activation barrier for 
the reaction is reduced by stress [9].  The ni are not constants but depend on temperature [10]. 
 
Of the three models considered here it is unclear which one is correct to use.  For pristine fiber the power law gives a 
better fit to fatigue data but the exponential model gives a more consistent view of the effect of environment [9].  There 
is less information available for weak fiber, probably because the increased scatter leads to inconclusive results (as is 
the case for the data considered here).  However, there is evidence from slow crack growth measurements that the 
simple exponential form of equation (15) gives a better description than the other two [11,12].  Certainly, there is no 
evidence that Model 3, equation (16), fits any data best which is encouraging since it gives very pessimistic lifetime 
predictions.  While the power law is ubiquitous in the fiberoptics industry, Model 2 might be a more prudent choice for 
critical applications if a truly “worst case” assessment is sought.  
 
While the exponential models are more physically reasonable than the power law, they are mathematically substantially 
less convenient to use.  In particular, the case of dynamic fatigue can not be solved analytically and numerical methods 
are required.  As a result the calculation of SPT diagrams is significantly more complex that simply substituting 
experimental results into a simple equation such as equation (12).  The question is then how to perform the calculations 
needed to generate the SPT diagram? 
 
SPT diagrams are Weibull plots that represent the variability expected in the static fatigue behavior.  This variability 
results fundamentally from variability in the size of the defect or crack that leads to failure, i.e. it results from the 
variability in the inert strength.  It is therefore proposed that the SPT diagram can be calculated via calculations of inert 
strength.  However, as discussed above, the inert strength is difficult to measure.  This difficulty is avoided by assuming 
a reasonable value for the central or average inert strength.  Since the mapping from dynamic to static fatigue is 
insensitive to the inert strength, the actual value assumed is unimportant, as will be shown.   
 
Calculations that are used here involve integration of the kinetics equations, (15) or (16), using an appropriate loading 
scheme (constant stress or constant stress rate).  A fourth order Runge-Kutta method has been used.  Precision has been 
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verified by comparing the numerical results for static fatigue to the analytical results which are available.  The SPT 
diagram is then calculated using the following steps: 
 
1. Fit to the measured dynamic fatigue data using an assumed reasonable value for the average inert strength to obtain 

the best fit fatigue parameters, Ai and ni.  Nonlinear least squares regression is used for this purpose [13].  Although 
not needed for the SPT calculations, confidence intervals for the fatigue parameters are determined taking into 
account their correlations [13]. 

2. For each measurement of strength at each stress rate, the fatigue equation is integrated using the best fit values of Ai 
and ni while the inert strength is iteratively adjusted (using a Newton-Raphson algorithm) until the calculated 
strength matches the actual measurement.  In effect this back-calculates the inert strength corresponding to each 
strength measured under dynamic fatigue conditions.  The result of this step is a distribution of inert strengths. 

3. For each inert strength determined in the previous step, the fatigue equation is integrated under static fatigue 
conditions to obtain the time to failure for a given applied stress.  Alternatively, the applied stress is iteratively 
adjusted (again using a Newton-Raphson algorithm) to obtain the applied stress that results in a given time to 
failure.  The results of this step are graphed as a Weibull plot which is the needed SPT diagram. 

 
The numerical methods used were verified by comparing the results of numerical calculations for the power law with 
those calculated using equation (12).  The analytical and numerical results were essentially indistinguishable.  
 
 

3.  RESULTS 
 
The methods developed here for determining SPT diagrams for the exponential kinetics have been illustrated by 
applying them to data for weak fiber that have been published in the literature.  Yuce et al. [14] made deliberately 
weakened fiber by passing it over an abrasive coated wheel on-line during the draw process prior to coating.  They then 
measured the dynamic fatigue of the fiber both as-received and after aging for various times in different environments.  
For the unaged as-received fiber they measured the strength of 60 specimens at each of four strain rates each separated 
by a decade in rate.  They show a Weibull plot (their figure 3) on which the points show considerable overlap and which 
can not be individually resolved.  This figure has been digitized and the results have been interpolated to generate 15 
measurements at each rate to give dynamic fatigue measurements that are compliant with the widely used standard test 
procedure, FOTP-28 [15].  This approach therefore approximates a random subset of the original data.  Figure 1a shows 
a Weibull plot of the resulting data; the Weibull modulus is approximately 5.  Figure 1b shows a log-log dynamic 
fatigue plot for these data where the points are the (geometric) mean of the data for each rate and the error bars are a 
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Fig. 1.  (a) Weibull plot and (b) dynamic fatigue plot of a subset of the data of Yuce et al. [14] for deliberately 
weakened fiber. 
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95% confidence interval for the mean.  The solid line is found by fitting the power law fatigue equation (11) to the data 
using methods specified in FOTP-28.  From the slope of the line the fatigue parameter n is found to be 19 with a 95% 
confidence interval from 13 to 36.  A value of 19 is perhaps a little low but not untypical and the rather broad 
confidence interval results from the large scatter in the data. 
 
Figure 2 shows the results of fitting the three kinetics models to the same data using nonlinear regression coupled with 
numerical integration of the dynamic fatigue equations.  Also shown are the 95% confidence bands for the regression 
fit.  It is found that none of the three models gives a significantly better fit than the others, principally because of the 
large scatter in the data.   
 
Figure 3 shows the predicted static fatigue behavior of the fiber using the best fit parameters and their variances.  As is 
well know, the exponential forms predict a much shorter lifetime at low applied stress than the power law [8,16].  
Interestingly, the lower bound of the 95% confidence interval does not show such a big difference between the models.  
The confidence intervals for the predictions are large (as exemplified by the error bars for an applied stress of 0.2 GPa) 
which is unremarkable given the scatter in the data.  However, there have been several studies of the fatigue of weak 
fiber so that there is more knowledge about the behavior than simply given by the data used here.  A review [17] of the 
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Fig. 2.  Fits of the three crack growth kinetics models to the data of figure 1.  The confidence bands represent a 

95% interval. 
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Fig. 3.  Predictions of static fatigue behavior using the fatigue parameters found by fitting to the dynamic fatigue 

data of figure 2. 
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power law exponent, n or n1, for weak fibers shows literature values lying between approximately 20 and 40.  Although 
there have been several other studies since that review was published, they have not changed that picture.  Therefore the 
best fit value of n = 19 might be considered, in the light of other studies, as a suitable “worst case” value so that the 
lower confidence bound in figure 3 is overly pessimistic.  In practical situations in which fiber can not be proof tested, 
there might be insufficient specimens to determine the fatigue behavior so only a strength measurement at a single rate 
is available.  Lifetime predictions then have to use a worst case n obtained from other work and the solid lines in figure 
3 then might be considered as a more realistic worst case for the example data being considered here. 
 
As prescribed above, the intermediate step in calculating the SPT diagrams is calculating the inert strength 
corresponding to each strength measurement and the results are shown in figure 4.  The results were calculated 
assuming a value for the average inert strength of σi = 2 GPa which is roughly three times the mean measured strength 
(figure 1).  Figure 4a shows results calculated for the power law only; the different symbols correspond to different 
stress rates and it is observed that the inert strengths for each rate are distributed approximately uniformly across the 
Weibull plot.  This means that the fatigue parameters found by fitting to the original strength data are correct – if they 
were not, the inert strengths corresponding to each rate would be grouped together and not uniformly spread out.  Figure 
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Fig. 4.  Inert strengths calculated from the dynamic strengths in figure 1a using a mean inert strength of 2 GPa; (a) results 

for the power law showing different stress rates and (b) results for all three kinetics models. 
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Fig. 5.  SPT diagrams calculated from the inert strengths shown in figure 4b; (a) distribution of failure times for an 
applied stress of 200 MPa, (b) distribution of failure stresses for a 10 year time to failure.
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4b shows the results for both the power law and the exponential forms.  The data for the different models are, of course, 
centered in the same position because the same value of average inert strength is assumed in all three cases.  However, 
the data are very similar and the distribution widths are similar.  Indeed, the fit lines, which are the Weibull distribution 
estimated by an unbiased likelihood technique [18], are almost coincident for all three kinetics models.  Overall, 
therefore, the calculated inert strengths are insensitive to the assumed form of the kinetics model. 
 
The inert strengths are then used to calculate the predicted static fatigue behavior, i.e. the SPT diagrams corresponding 
to the original data.  Examples of two types of SPT diagram are shown in figure 5.  Figure 5a is a Weibull plot of the 
calculated failure times for a 200 MPa applied/service stress.  The alternative view in figure 5b shows the calculated 
failure stresses for a 10 year lifetime; this diagram can be used to read off the probability of failure during the design 
life for any given service stress. 
 
As expected, both figures predict poorer performance using the exponential forms than the power law; shorter lifetimes 
for a given service stress or higher probability of failure for a given service life.  However, another feature is that the 
distribution widths are substantially narrower for the exponential forms.  This can be qualitatively understood from what 
is known about the statistics for the power law.  Assuming power law kinetics, the Weibull modulus for the time to 
failure under a static stress, ms, is related to the Weibull modulus of strength measurements under dynamic fatigue, md, 
via the power law fatigue parameter, n, [3]: 

 1 1
1s d dm m m

n n
= ≈

+
. (17) 

This means that for smaller values of n the Weibull modulus of the times to failure is higher and hence there is less 
scatter.  n can be defined in terms of the slope of the static fatigue plot: 

 
log
log

f

a

d t
n

d
= −

σ
 (18) 

It is seen from figure 3 that the effective power law n, at for example 200 MPa applied stress, is lower for the 
exponential forms than for the power law since the slopes are shallower.  Equation (17) therefore suggests that the 
scatter in the predicted times to failure should be lower for the exponential forms, as is indeed observed in figure 5. 
 
The width of the distributions in figure 5 represents uncertainty in the behavior of a single specimen.  This does not 
include the uncertainty due to the error in the estimates of the fatigue parameters, Ai and ni.  The confidence bands for 
the extrapolations in figure 3, however, do characterize that effect.  Taking a service stress of 200 MPa as an example, 
the confidence bands in figure 3 can be superimposed on the SPT diagram as shown in figure 6, where the error bars are 
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Fig. 6.  SPT diagram of figure 5a with confidence bands for the extrapolation for the mean lifetime determined 

from figure 3. 
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centered on the (geometric) average time to failure.  In this way we can compare the variability about the mean due to 
(i) the extrapolation error and (ii) the intrinsic scatter in the strength.  These two quantities are somewhat related but are 
not the same.  For the data examined here the 95% error bars on the extrapolation are wider than the distribution.  In this 
particular case it means that uncertainty in the extrapolated mean time to failure is dominated by uncertainty in the 
fatigue parameters, rather than the intrinsic scatter in the strength.  The uncertainty in the predicted lifetime tends to be 
controlled by uncertainty in the fatigue parameter for longer times to failure and narrower strength distributions 
 
It was argued earlier that the details of the v-KI behavior in the region of the inert strength makes no difference to the 
results even though those results are obtained by calculating the inert strength.  Confirmation of this can be obtained by 
changing the assumed mean inert strength.  Figure 6 was calculated assuming a mean inert strength of 2 GPa; using 
values of 1.5 and 2.5 GPa changed the results by less than 0.1% for all the data points for all three models.  Since the 
assumed inert strength does not change the SPT diagram, it is reasonable to assume that if there is a change in behavior 
in the region of the inert strength, e.g. if Region II crack growth occurs, this will also not significantly change the 
results.   
 
3.1  Effect of the strength distribution 
 
While the SPT diagrams are typically plotted with a Weibull probability scale, the method for obtaining the data does 
not assume a Weibull distribution, or indeed any other particular distribution.  Analytical models for reliability do need 
to make some assumption about the mathematical form of the inert strength distribution which can be a disadvantage.   
 
Breuls and Svensson [19] made weak optical fiber by drawing the fiber from a preform whose surface had been 
deliberately contaminated with zirconia particles.  They found that a Weibull plot of the strengths showed distinct non-
linearity and was not described well by the Weibull distribution.  They attributed this effect to the zirconia particle size 
distribution.  Their data are reproduced in figure 7a where it is seen that the shape of the distribution is similar for each 
of four stress rates.  These data have been used to construct an SPT diagram for static fatigue subjected to a service 
stress of 250 MPa and the result is seen in figure 7b.  The non-linear shape of the distribution is reproduced in the SPT 
diagram, although it is less obvious for the exponential forms because of their narrow width.  This result illustrates that 
the SPT diagram faithfully reproduces the shape of the strength distribution even if it is not a simple Weibull 
distribution. 
 
3.2  Effect of the service environment 
 
The analysis in section 2 above implicitly assumes that the fatigue constants, Ai and ni, are indeed constant.  This 
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Fig. 7.  (a) Dynamic fatigue data of Breuls and Svensson [19] and (b) SPT diagram calculated for an applied stress of 

250 MPa. 
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therefore assumes that the test environment for the dynamic fatigue measurements is the same as the service 
environment.  In cases where this is not so, the SPT diagrams can still be calculated if it is known how the fatigue 
parameters vary with environment.  The procedure is to calculate the inert strengths using the fatigue parameters found 
by fitting to the dynamic fatigue data.  The SPT diagram is then calculated from the inert strengths using fatigue 
parameters appropriate for the service environment.  The behavior of the fatigue parameters is known in some detail for 
pristine fiber as a function of temperature, humidity and pH [9], but much less is known for weak fiber.   
 
3.3  Effect of test technique and fiber length 
 
The distribution of stress in the fiber may well be different in service and while strength testing.  For example, a fiber 
amplifier might comprise a coil of fiber which experiences a bending stress while the strength measurement would 
normally be conducted in uniaxial tension.  The effective lengths of fiber subjected to stress would be different in these 
two cases.  This can be taken into account using suitable “shape factors” [3].  Shape factors are normally determined 
assuming both a Weibull distribution and power law fatigue.  The most commonly encountered stress distributions are 
uniaxial bending, uniform (mandrel) bending and two-point bending.  Shape factors for two-point bending have been 
found for both static and dynamic fatigue and have been compared to tension and uniform bending [20,21]. 
 
Once the shape factors are known it is relatively straightforward to incorporate their effect into the SPT diagram 
calculations.  First the SPT diagram is determined using the methods outlined above.  This results in a Weibull plot of 
the times to failure for the same stress distribution as the strength measurements (i.e. uniaxial tension for the amplifier 
example).  The Weibull modulus of the static time to failure is then calculated from the data.  Next, the results are 
corrected for the change in stress field by applying the appropriate shape factor.  The shape parameter is usually a 
simple factor which depends only on the Weibull modulus of the static fatigue case; as such it represents a sideways or 
vertical shift of the data in the SPT diagram. 
 
 

4.  CONCLUSIONS 
 
Ideally, the reliability of optical fiber and fiber components should be assured by proof testing.  However, in some 
situations this is not possible, for example when a fiber is enclosed in a device with strain relief which forbids the 
possibility of applying any proof stress.  In such circumstances the reliability can only be assured if it is assured that the 
fiber is not subjected to any stress – but this is usually not possible.  It may, however, be possible to remove fiber from 
some devices and measure its strength to characterize the strength distribution, and perhaps also to characterize the 
fatigue characteristics.  Stress-Probability-Time diagrams can then be used to predict failure rates for a given service 
stress or service life.   
 
A method for calculating Stress-Probability-Time diagrams for assessing optical fiber reliability has been proposed here 
which involves using the inert strength corresponding to each measured strength as an intermediate step.  The 
methodology has been successfully applied to literature data for relatively weak fiber.  As expected, the power law 
makes the most optimistic prediction of performance while the physically more reasonable exponential forms give a 
more conservative view.  In addition it is found that the widths of the predicted distributions of time to failure or failure 
stress for long-term behavior are quite different for the different kinetics models – the distribution is widest for the 
power law.  Methods are given for accounting for differences between the service and testing environments and 
differences between the service and testing stress distributions. 
 
SPT diagrams are a useful way of visualizing reliability behavior.  In particular they enable one to directly visualize the 
distribution of failure times for a given service stress (or failure stresses for a given service life) and so take into account 
variability in lifetime due to the inherent variability in strength.  However, they do not account for uncertainty in the 
fatigue parameters used to make the predictions, but this source of uncertainty might dominate.  SPT diagrams do not 
therefore give all the information needed for making reliability predictions but are a useful adjunct to other methods.  
They are particularly useful if “worst case” values for the fatigue parameters are used since parameter uncertainty is 
then not an issue. 
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